Effect of hot-electron preheating on the multimode bubble-front growth of the ablative Rayleigh-Taylor instability

被引:4
作者
Li, Jun [1 ,2 ]
Yan, Rui [2 ]
Zhao, Bin [3 ]
Wu, Junfeng [1 ]
Wang, Lifeng [1 ]
Zou, Shiyang [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 10094, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Mech, Hefei 230026, Peoples R China
[3] Nanjing Inst Technol, Dept Math & Phys, Nanjing 211167, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
STABILIZATION; TARGETS; MODEL;
D O I
10.1063/5.0177216
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Hot electrons (HEs) generated via parametric instabilities at high laser intensities are a critical concern of laser-driven inertial confinement fusion (ICF), which can significantly impact the ICF performance by preheating the target. In this paper, the effects of HE preheating with moderate HE energy on the evolution of two-dimensional multimode ablative Rayleigh-Taylor instability (ARTI) up to the self-similar growth stage are studied through numerical simulations with a multigroup diffusion model. It is found that HE preheating stabilizes the linear growth of multimode ARTI and delays the onset of the self-similar growth regime. This time delay is more significant for the short-wavelength mode ARTI and higher energy HE cases. It is also shown that the variation of self-similar growth coefficients under HE preheating is not very significant. The delay to the onset of the nonlinear stage of multimode ARTI by HE preheating with moderate energy may be beneficial to ICF implosions.
引用
收藏
页数:8
相关论文
共 69 条
[1]   POWER LAWS AND SIMILARITY OF RAYLEIGH-TAYLOR AND RICHTMYER-MESHKOV MIXING FRONTS AT ALL DENSITY RATIOS [J].
ALON, U ;
HECHT, J ;
OFER, D ;
SHVARTS, D .
PHYSICAL REVIEW LETTERS, 1995, 74 (04) :534-537
[2]   Theory of laser-induced adiabat shaping in inertial fusion implosions: The decaying shock [J].
Anderson, K ;
Betti, R .
PHYSICS OF PLASMAS, 2003, 10 (11) :4448-4462
[3]  
[Anonymous], 2019, The physics of laser plasma interactions
[4]  
Atzeni S., 2004, PHYINERTIAL FUSION
[5]   Bubble acceleration in the ablative Rayleigh-Taylor instability [J].
Betti, R. ;
Sanz, J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (20)
[6]  
Betti R, 2016, NAT PHYS, V12, P435, DOI [10.1038/nphys3736, 10.1038/NPHYS3736]
[7]   Shock ignition of thermonuclear fuel with high areal density [J].
Betti, R. ;
Zhou, C. D. ;
Anderson, K. S. ;
Perkins, L. J. ;
Theobald, W. ;
Solodov, A. A. .
PHYSICAL REVIEW LETTERS, 2007, 98 (15)
[8]   Revisiting the late-time growth of single-mode Rayleigh-Taylor instability and the role of vorticity [J].
Bian, Xin ;
Aluie, Hussein ;
Zhao, Dongxiao ;
Zhang, Huasen ;
Livescu, Daniel .
PHYSICA D-NONLINEAR PHENOMENA, 2020, 403
[9]   STABILIZATION OF THE RAYLEIGH-TAYLOR INSTABILITY BY CONVECTION IN SMOOTH DENSITY GRADIENT - WENTZEL-KRAMERS-BRILLOUIN ANALYSIS [J].
BUDKO, AB ;
LIBERMAN, MA .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (11) :3499-3506
[10]   Laser-direct-drive program: Promise, challenge, and path forward [J].
Campbell, E. M. ;
Goncharov, V. N. ;
Sangster, T. C. ;
Regan, S. P. ;
Radha, P. B. ;
Betti, R. ;
Myatt, J. F. ;
Froula, D. H. ;
Rosenberg, M. J. ;
Igumenshchev, I. V. ;
Seka, W. ;
Solodov, A. A. ;
Maximov, A. V. ;
Marozas, J. A. ;
Collins, T. J. B. ;
Turnbull, D. ;
Marshall, F. J. ;
Shvydky, A. ;
Knauer, J. P. ;
McCrory, R. L. ;
Sefkow, A. B. ;
Hohenberger, M. ;
Michel, P. A. ;
Chapman, T. ;
Masse, L. ;
Goyon, C. ;
Ross, S. ;
Bates, J. W. ;
Karasik, M. ;
Oh, J. ;
Weaver, J. ;
Schmitt, A. J. ;
Obenschain, K. ;
Obenschain, S. P. ;
Reyes, S. ;
Van Wonterghem, B. .
MATTER AND RADIATION AT EXTREMES, 2017, 2 (02) :37-54