An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae

被引:4
作者
Vargas, Beatriz de Oliveira [1 ]
dos Santos, Jade Ribeiro [1 ]
Pereira, Goncalo Amarante Guimaraes [1 ]
de Mello, Fellipe da Silveira Bezerra [1 ]
机构
[1] Univ Estadual Campinas, Inst Biol, Dept Genet Evolut Microbiol & Immunol, Campinas, Brazil
关键词
Xylose; Saccharomyces cerevisiae; Metabolic engineering; Cellulosic ethanol; Yeast; PPP; CRISPR-Cas9; Bioenergy; Bioethanol; Gene editing; PENTOSE-PHOSPHATE PATHWAY; STIPITIS XYLITOL DEHYDROGENASE; YEAST HEXOSE TRANSPORTERS; ETHANOL-PRODUCTION; PICHIA-STIPITIS; COENZYME SPECIFICITY; CANDIDA-INTERMEDIA; CO-FERMENTATION; FUNCTIONAL EXPRESSION; BIOETHANOL PRODUCTION;
D O I
10.7717/peerj.16340
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Xylose is the second most abundant carbohydrate in nature, mostly present in lignocellulosic material, and representing an appealing feedstock for molecule manufacturing through biotechnological routes. However, Saccharomyces cerevisiae-a microbial cell widely used industrially for ethanol production-is unable to assimilate this sugar. Hence, in a world with raising environmental awareness, the efficient fermentation of pentoses is a crucial bottleneck to producing biofuels from renewable biomass resources. In this context, advances in the genetic mapping of S. cerevisiae have contributed to noteworthy progress in the understanding of xylose metabolism in yeast, as well as the identification of gene targets that enable the development of tailored strains for cellulosic ethanol production. Accordingly, this review focuses on the main strategies employed to understand the network of genes that are directly or indirectly related to this phenotype, and their respective contributions to xylose consumption in S. cerevisiae, especially for ethanol production. Altogether, the information in this work summarizes the most recent and relevant results from scientific investigations that endowed S. cerevisiae with an outstanding capability for commercial ethanol production from xylose.
引用
收藏
页数:41
相关论文
共 160 条
[1]   Tuning genetic control through promoter engineering [J].
Alper, H ;
Fischer, C ;
Nevoigt, E ;
Stephanopoulos, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (36) :12678-12683
[2]   THE FERMENTATION OF XYLOSE - AN ANALYSIS OF THE EXPRESSION OF BACILLUS AND ACTINOPLANES XYLOSE ISOMERASE GENES IN YEAST [J].
AMORE, R ;
WILHELM, M ;
HOLLENBERG, CP .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1989, 30 (04) :351-357
[3]   Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae [J].
Apel, Amanda Reider ;
Ouellet, Mario ;
Szmidt-Middleton, Heather ;
Keasling, Jay D. ;
Mukhopadhyay, Aindrila .
SCIENTIFIC REPORTS, 2016, 6
[4]   Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source [J].
Attfield, Paul V. ;
Bell, Philip J. L. .
FEMS YEAST RESEARCH, 2006, 6 (06) :862-868
[5]   Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review [J].
Balat, Mustafa .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (02) :858-875
[6]   Disruption of PHO13 improves ethanol production via the xylose isomerase pathway [J].
Bamba, Takahiro ;
Hasunuma, Tomohisa ;
Kondo, Akihiko .
AMB EXPRESS, 2016, 6 :1-10
[7]   DIRECT EVIDENCE FOR A XYLOSE METABOLIC PATHWAY IN SACCHAROMYCES-CEREVISIAE [J].
BATT, CA ;
CARVALLO, S ;
EASSON, DD ;
AKEDO, M ;
SINSKEY, AJ .
BIOTECHNOLOGY AND BIOENGINEERING, 1986, 28 (04) :549-553
[8]   Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering [J].
Bengtsson, Oskar ;
Jeppsson, Marie ;
Sonderegger, Marco ;
Parachin, Nadia Skorupa ;
Sauer, Uwe ;
Hahn-Hagerdal, Baerbel ;
Gorwa-Grauslund, Mane-F. .
YEAST, 2008, 25 (11) :835-847
[9]   Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters [J].
Bertilsson, Magnus ;
Andersson, Jonas ;
Liden, Gunnar .
BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2008, 31 (04) :369-377
[10]   Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains [J].
Bettiga, Maurizio ;
Hahn-Hagerdal, Barbel ;
Gorwa-Grauslund, Marie F. .
BIOTECHNOLOGY FOR BIOFUELS, 2008, 1 (1)