k-PFPMiner: Top-k Periodic Frequent Patterns in Big Temporal Databases

被引:0
作者
Likhitha, Palla [1 ]
Ravikumar, Penugonda [1 ]
Saxena, Deepika [1 ]
Kiran, Rage Uday [1 ]
Watanobe, Yutaka [1 ]
机构
[1] Univ Aizu, Div Informat Syst, Aizu Wakamatsu, Fukushima 9650006, Japan
基金
日本学术振兴会;
关键词
Data mining; pattern mining; temporal databases; top-k; periodic-frequent patterns; ALGORITHMS;
D O I
10.1109/ACCESS.2023.3325839
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finding periodic-frequent patterns in temporal databases is a prominent data mining problemwith bountiful applications. It involves discovering all patterns in a database that satisfy the user-specifiedminimum support(min_sup) and maximum periodicity(max_per) constraints.Min_supcontrols the leastnumber of transactions in which a pattern must appear in a database.Max_percontrols the maximumtime interval within which a pattern must reappear in the database. The popular adoption of this task hasbeen hindered by an open problem, which involves setting appropriatemin_supandmax_pervalues forany given database. This paper addresses this open problem by proposing a solution to discover top-kperiodic-frequent patterns in a temporal database. Top-kperiodic-frequent patterns represent theknumberof periodic-frequent patterns having the lowestperiodicityvalue in a database. An efficient depth-first searchalgorithm, Top-kPeriodic-Frequent Pattern Miner (k-PFPMiner), which takes onlykthreshold as an input,was presented to find all desired patterns in a database. Experimental results on synthetic and real-worlddatabases demonstrate that our algorithm is efficient and scalable.
引用
收藏
页码:119033 / 119044
页数:12
相关论文
共 39 条
  • [1] Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
  • [2] Amphawan K, 2009, COMM COM INF SC, V55, P18
  • [3] Anirudh A, 2016, 2016 IEEE S SER COMP, P1, DOI [10.1109/SSCI.2016.7849926, DOI 10.1109/SSCI.2016.7849926]
  • [4] Bastide Y., 2000, ACM SIGKDD Explorations Newsletter, V2, P66, DOI [DOI 10.1145/380995.381017, 10.1145/380995.381017]
  • [5] Finding Stable Periodic-Frequent Itemsets in Big Columnar Databases
    Dao, Hong N.
    Ravikumar, Penugonda
    Likhitha, Palla
    Kiran, Rage Uday
    Watanobe, Yutaka
    Paik, Incheon
    [J]. IEEE ACCESS, 2023, 11 : 12504 - 12524
  • [6] Towards Efficient Discovery of Stable Periodic Patterns in Big Columnar Temporal Databases
    Dao, Hong N.
    Ravikumar, Penugonda
    Likitha, P.
    Raj, Bathala Venus Vikranth
    Kiran, R. Uday
    Watanobe, Yutaka
    Paik, Incheon
    [J]. ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND PRACTICES IN ARTIFICIAL INTELLIGENCE, 2022, 13343 : 831 - 843
  • [7] Fournier-Viger P., 2012, PROC 8 INT C ADV DAT, V7713, P431, DOI [10.1007/978-3-642-35527-1_36, DOI 10.1007/978-3-642-35527-1_36]
  • [8] Mining local periodic patterns in a discrete sequence
    Fournier-Viger, Philippe
    Yang, Peng
    Kiran, Rage Uday
    Ventura, Sebastian
    Maria Luna, Jose
    [J]. INFORMATION SCIENCES, 2021, 544 : 519 - 548
  • [9] Discovering Stable Periodic-Frequent Patterns in Transactional Data
    Fournier-Viger, Philippe
    Yang, Peng
    Lin, Jerry Chun-Wei
    Kiran, Rage Uday
    [J]. ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: FROM THEORY TO PRACTICE, 2019, 11606 : 230 - 244
  • [10] Efficient algorithms to identify periodic patterns in multiple sequences
    Fournier-Viger, Philippe
    Li, Zhitian
    Lin, Jerry Chun-Wei
    Kiran, Rage Uday
    Fujita, Hamido
    [J]. INFORMATION SCIENCES, 2019, 489 : 205 - 226