Vortex matter and critical magnetic fields in mesoscopic superconducting strips

被引:3
作者
Ge, Jun-Yi [1 ,2 ]
Gladilin, Vladimir N. [3 ]
van de Vondel, Joris [4 ]
Moshchalkov, Victor V. [4 ]
机构
[1] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Dept Phys, Shanghai Key Lab High Temp Supercond, Shanghai 200444, Peoples R China
[3] Univ Antwerp, TQC Theory Quantum & Complex Syst, Univ pl 1, B-2610 Antwerp, Belgium
[4] Katholieke Univ Leuven, Dept Phys & Astron, Quantum Solid State Phys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
基金
中国国家自然科学基金;
关键词
critical magnetic fields; vortex matter; superconducting strip; scanning Hall probe microscopy; TEMPERATURE; STATE;
D O I
10.1088/1361-6668/acdc5a
中图分类号
O59 [应用物理学];
学科分类号
摘要
As compared with bulk materials, superconducting strips with lateral dimensions limited to the mesoscopic region exhibit non-trivial properties, among which the critical magnetic fields related to both vortex penetration B-p and full vortex expulsion B-m still remain elusive. By using low-temperature scanning Hall probe microscope, the critical magnetic fields are studied experimentally in a series of superconducting Pb strips with different widths. It is found that the penetration magnetic field follows a power law dependence with strip width, and vortices can only penetrate the strips when the energy barrier at the edges is completely suppressed. In the field-cooling process, vortices are fully expelled from the strips below B-m, above which the number of trapped vortices linearly increases with magnetic field. Compared with various theoretical predictions, we have found that the experimentally observed B-m corresponds to the field at which the Gibbs free energy in the strip center is minimized. Our study provides important implications for designing nanostructured devices with superconducting strips.
引用
收藏
页数:6
相关论文
共 34 条
[1]  
ABRIKOSOV AA, 1964, SOV PHYS JETP-USSR, V19, P988
[2]  
Auslaender O M., 2008, NAT PHYS, V10, P1038
[3]   Confinement Effects on Intermediate-State Flux Patterns in Mesoscopic Type-I Superconductors [J].
Berdiyorov, G. R. ;
Hernandez, A. D. ;
Peeters, F. M. .
PHYSICAL REVIEW LETTERS, 2009, 103 (26)
[4]   VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS [J].
BLATTER, G ;
FEIGELMAN, MV ;
GESHKENBEIN, VB ;
LARKIN, AI ;
VINOKUR, VM .
REVIEWS OF MODERN PHYSICS, 1994, 66 (04) :1125-1388
[5]   A review of finite size effects in quasi-zero dimensional superconductors [J].
Bose, Sangita ;
Ayyub, Pushan .
REPORTS ON PROGRESS IN PHYSICS, 2014, 77 (11)
[6]  
Clem J R., 1998, Bull. Am. Phys. Soc, V43, P411, DOI [10.1103/PhysRevLett.114.077002, DOI 10.1103/PHYSREVLETT.114.077002]
[7]   Magnetic field-induced dissipation-free state in superconducting nanostructures [J].
Cordoba, R. ;
Baturina, T. I. ;
Sese, J. ;
Mironov, A. Yu ;
De Teresa, J. M. ;
Ibarra, M. R. ;
Nasimov, D. A. ;
Gutakovskii, A. K. ;
Latyshev, A. V. ;
Guillamon, I. ;
Suderow, H. ;
Vieira, S. ;
Baklanov, M. R. ;
Palacios, J. J. ;
Vinokur, V. M. .
NATURE COMMUNICATIONS, 2013, 4
[8]   High-T-c super conducting quantum interference devices with slots or holes: Low 1/f noise in ambient magnetic fields [J].
Dantsker, E ;
Tanaka, S ;
Clarke, J .
APPLIED PHYSICS LETTERS, 1997, 70 (15) :2037-2039
[9]   Magnetic vortex crystal formation in the antidot complement of square artificial spin ice [J].
de Araujo, C. I. L. ;
Silva, R. C. ;
Ribeiro, I. R. B. ;
Nascimento, F. S. ;
Felix, J. F. ;
Ferreira, S. O. ;
Mol, L. A. S. ;
Moura-Melo, W. A. ;
Pereira, A. R. .
APPLIED PHYSICS LETTERS, 2014, 104 (09)
[10]   Doping- and irradiation-controlled pinning of vortices in BaFe2(As1-xPx)2 single crystals [J].
Fang, L. ;
Jia, Y. ;
Schlueter, J. A. ;
Kayani, A. ;
Xiao, Z. L. ;
Claus, H. ;
Welp, U. ;
Koshelev, A. E. ;
Crabtree, G. W. ;
Kwok, W. -K. .
PHYSICAL REVIEW B, 2011, 84 (14)