The value of machine learning based radiomics model in preoperative detection of perineural invasion in gastric cancer: a two-center study

被引:3
作者
Gao, Xujie [1 ,2 ,3 ,4 ]
Cui, Jingli [1 ,2 ,3 ,4 ,5 ]
Wang, Lingwei [1 ,2 ,3 ,4 ]
Wang, Qiuyan [6 ]
Ma, Tingting [1 ,2 ,3 ,4 ,7 ]
Yang, Jilong [2 ,3 ,4 ,8 ]
Ye, Zhaoxiang [1 ,2 ,3 ,4 ]
机构
[1] Tianjin Med Univ, Canc Inst & Hosp, Dept Radiol, Tianjin, Peoples R China
[2] Natl Clin Res Ctr Canc, Dept Radiol, Tianjin, Peoples R China
[3] Tianjins Clin Res Ctr Canc, Dept Radiol, Tianjin, Peoples R China
[4] Key Lab Canc Prevent & Therapy, Tianjin, Peoples R China
[5] Weifang Peoples Hosp, Dept Gen Surg, Weifang, Shandong, Peoples R China
[6] Weifang Peoples Hosp, Dept Radiol, Weifang, Shandong, Peoples R China
[7] Tianjin Canc Hosp, Dept Radiol, Airport Hosp, Tianjin, Peoples R China
[8] Tianjin Med Univ, Canc Inst & Hosp, Dept Bone & Soft Tissue Tumor, Tianjin, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2023年 / 13卷
基金
中国国家自然科学基金;
关键词
radiomics; perineural invasion; gastric cancer; computed tomography; nomogram; CT TEXTURE; PREDICTION; METASTASIS;
D O I
10.3389/fonc.2023.1205163
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PurposeTo establish and validate a machine learning based radiomics model for detection of perineural invasion (PNI) in gastric cancer (GC). MethodsThis retrospective study included a total of 955 patients with GC selected from two centers; they were separated into training (n=603), internal testing (n=259), and external testing (n=93) sets. Radiomic features were derived from three phases of contrast-enhanced computed tomography (CECT) scan images. Seven machine learning (ML) algorithms including least absolute shrinkage and selection operator (LASSO), naive Bayes (NB), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), random forest (RF), eXtreme gradient boosting (XGBoost) and support vector machine (SVM) were trained for development of optimal radiomics signature. A combined model was constructed by aggregating the radiomic signatures and important clinicopathological characteristics. The predictive ability of the radiomic model was then assessed with receiver operating characteristic (ROC) and calibration curve analyses in all three sets. ResultsThe PNI rates for the training, internal testing, and external testing sets were 22.1, 22.8, and 36.6%, respectively. LASSO algorithm was selected for signature establishment. The radiomics signature, consisting of 8 robust features, revealed good discrimination accuracy for the PNI in all three sets (training set: AUC = 0.86; internal testing set: AUC = 0.82; external testing set: AUC = 0.78). The risk of PNI was significantly associated with higher radiomics scores. A combined model that integrated radiomics and T stage demonstrated enhanced accuracy and excellent calibration in all three sets (training set: AUC = 0.89; internal testing set: AUC = 0.84; external testing set: AUC = 0.82). ConclusionThe suggested radiomics model exhibited satisfactory prediction performance for the PNI in GC.
引用
收藏
页数:10
相关论文
共 34 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Molecular factors governing perineural invasion in malignancy [J].
Ahmadi, Navid ;
Kelly, Gretel ;
Low, Tsu-Hui ;
Clark, Jonathan ;
Gupta, Ruta .
SURGICAL ONCOLOGY-OXFORD, 2022, 42
[3]   Machine learning and deep learning methods that use omics data for metastasis prediction [J].
Albaradei, Somayah ;
Thafar, Maha ;
Alsaedi, Asim ;
Van Neste, Christophe ;
Gojobori, Takashi ;
Essack, Magbubah ;
Gao, Xin .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :5008-5018
[4]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[5]   Concurrent lymphovascular and perineural invasion after preoperative therapy for gastric adenocarcinoma is associated with decreased survival [J].
Blumenthaler, Alisa N. ;
Newhook, Timothy E. ;
Ikoma, Naruhiko ;
Estrella, Jeannelyn S. ;
Murphy, Mariela Blum ;
Das, Prajnan ;
Minsky, Bruce D. ;
Ajani, Jaffer A. ;
Mansfield, Paul F. ;
Badgwell, Brian D. .
JOURNAL OF SURGICAL ONCOLOGY, 2021, 123 (04) :911-922
[6]   Venous Invasion and Perineural Invasion as Upstaging and Poor Prognostic Factors in N0 Gastric Cancers [J].
Chang, Kyungseek ;
Song, Boram ;
DO, In-Gu ;
Koo, Dong-Hoe ;
Lee, Hyoun Wook ;
Son, Byung Ho ;
Yoo, Chang Hak ;
Kim, Kyungeun .
ANTICANCER RESEARCH, 2021, 41 (11) :5803-5810
[7]   Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes [J].
Cristescu, Razvan ;
Lee, Jeeyun ;
Nebozhyn, Michael ;
Kim, Kyoung-Mee ;
Ting, Jason C. ;
Wong, Swee Seong ;
Liu, Jiangang ;
Yue, Yong Gang ;
Wang, Jian ;
Yu, Kun ;
Ye, Xiang S. ;
Do, In-Gu ;
Liu, Shawn ;
Gong, Lara ;
Fu, Jake ;
Jin, Jason Gang ;
Choi, Min Gew ;
Sohn, Tae Sung ;
Lee, Joon Ho ;
Bae, Jae Moon ;
Kim, Seung Tae ;
Park, Se Hoon ;
Sohn, Insuk ;
Jung, Sin-Ho ;
Tan, Patrick ;
Chen, Ronghua ;
Hardwick, James ;
Kang, Won Ki ;
Ayers, Mark ;
Dai Hongyue ;
Reinhard, Christoph ;
Loboda, Andrey ;
Kim, Sung ;
Aggarwal, Amit .
NATURE MEDICINE, 2015, 21 (05) :449-U217
[8]  
Frunza A, 2014, J Med Life, V7, P121
[9]   Quantifying tumour heterogeneity with CT [J].
Ganeshan, Balaji ;
Miles, Kenneth A. .
CANCER IMAGING, 2013, 13 (01) :140-149
[10]   A CT-based Radiomics Model for Prediction of Lymph Node Metastasis in Early Stage Gastric Cancer [J].
Gao, Xujie ;
Ma, Tingting ;
Cui, Jingli ;
Zhang, Yuwei ;
Wang, Lingwei ;
Li, Hui ;
Ye, Zhaoxiang .
ACADEMIC RADIOLOGY, 2021, 28 (06) :E155-E164