Nielsen-Borsuk-Ulam number for maps between tori

被引:0
作者
de Melo, Givanildo Donizeti [1 ]
Vendruscolo, Daniel [2 ]
机构
[1] Univ Fed Reconcavo Bahia, Cruz Das Almas, BA, Brazil
[2] Univ Fed Sao Carlos, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Borsuk-Ulam Theorem; Nielsen-Borsuk-Ulam number; involutions; torus;
D O I
10.1007/s11784-023-01065-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compute the Nielsen-Borsuk-Ulam number for any self-map of n-torus, T-n, as well as any free involution t in T-n, with n = 3. Finally, we conclude that the tori, T-1, T-2 and T-3, are Wecken spaces in Nielsen-Borsuk-Ulam theory. Such a number is a lower bound for the minimal number of pair of points such that f(x) = f (t(x)) in a given homotopy class of maps.
引用
收藏
页数:21
相关论文
共 10 条
[1]  
Bauval A, 2018, Arxiv, DOI arXiv:1807.00159
[2]   The Nielsen Borsuk-Ulam number [J].
Cotrim, Fabiana Santos ;
Vendruscolo, Daniel .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (04) :613-619
[3]   Nielsen coincidence theory applied to Borsuk-Ulam geometric problems [J].
Cotrim, Fabiana Santos ;
Vendruscolo, Daniel .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (18) :3738-3745
[4]   The Borsuk-Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [J].
Goncalves, Daciberg Lima ;
Guaschi, John ;
Laass, Vinicius Casteluber .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
[5]   The Borsuk-Ulam theorem for maps into a surface [J].
Goncalves, Daciberg Lima ;
Guaschi, John .
TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (10-11) :1742-1759
[6]  
Goncalves DL., 2006, QUAEST MATH, V29, P117, DOI [10.2989/16073600609486153, DOI 10.2989/16073600609486153]
[7]   FREE CYCLIC ACTIONS ON S1XS1XS1 [J].
HEMPEL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (01) :221-227
[8]  
Jezierski J., 2006, TOPOLOGICAL FIXED PO, V3
[9]  
Laass V. C., 2015, THESIS I MATEMATICA
[10]  
Matousek J., 2003, Using the Borsuk-Ulam Theorem, DOI 10.1007/978-3-540-76649-0