Tin(II)-Based Metal-Organic Frameworks Enabling Efficient, Selective Reduction of CO2 to Formate under Visible Light

被引:39
作者
Kamakura, Yoshinobu [1 ]
Suppaso, Chomponoot [1 ]
Yamamoto, Issei [1 ]
Mizuochi, Ryusuke [1 ]
Asai, Yusuke [2 ]
Motohashi, Teruki [2 ]
Tanaka, Daisuke [3 ]
Maeda, Kazuhiko [1 ,4 ]
机构
[1] Tokyo Inst Technol, Sch Sci, Dept Chem, 2-12-1-NE-2 Ookayama,Meguro Ku, Tokyo 1528550, Japan
[2] Kanagawa Univ, Fac Engn, Dept Mat & Life Chem, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 2218686, Japan
[3] Kwansei Gakuin Univ, Sch Sci, Dept Chem, 1 Gakuen Uegahara, Sanda, Hyogo 6691330, Japan
[4] Tokyo Inst Technol, Living Syst Mat LiSM Res Grp, Int Res Frontiers Initiat IRFI, 4259 Nagatsuta Cho,Midori Ku, Yokohama, Kanagawa 2268502, Japan
关键词
Artificial Photosynthesis; Heterogeneous Photocatalysis; Hydrogen Carrier; Semiconductors; Solar Fuels; PHOTOCATALYTIC REDUCTION; ELECTRODES;
D O I
10.1002/anie.202305923
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Certain metal complexes are known as high-performance CO2 reduction photocatalysts driven by visible light. However, most of them rely on rare, precious metals as principal components, and integrating the functions of light absorption and catalysis into a single molecular unit based on abundant metals remains a challenge. Metal-organic frameworks (MOFs), which can be regarded as intermediate compounds between molecules and inorganic solids, are potential platforms for the construction of a simple photocatalytic system composed only of Earth-abundant nontoxic elements. In this work, we report that a tin-based MOF enables the conversion of CO2 into formic acid with a record high apparent quantum yield (9.8 % at 400 nm) and >99 % selectivity without the need for any additional photosensitizer or catalyst. This work highlights a new MOF with strong potential for photocatalytic CO2 reduction driven by solar energy.
引用
收藏
页数:5
相关论文
共 28 条
[1]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[2]  
BUHLER N, 1984, J PHYS CHEM-US, V88, P3261, DOI 10.1021/j150659a025
[3]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[4]   Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes [J].
Dalle, Kristian E. ;
Warnan, Julien ;
Leung, Jane J. ;
Reuillard, Bertrand ;
Karmel, Isabell S. ;
Reisner, Erwin .
CHEMICAL REVIEWS, 2019, 119 (04) :2752-2875
[5]   Air and moisture stable covalently-bonded tin(II) coordination polymers [J].
de Lima, G. M. ;
Walton, R. I. ;
Clarkson, G. J. ;
Bitzer, R. S. ;
Ardisson, J. D. .
DALTON TRANSACTIONS, 2018, 47 (24) :8013-8022
[6]   Carbon capture and conversion using metal-organic frameworks and MOF-based materials [J].
Ding, Meili ;
Flaig, Robinson W. ;
Jiang, Hai-Long ;
Yaghi, Omar M. .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (10) :2783-2828
[7]   Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors [J].
Habisreutinger, Severin N. ;
Schmidt-Mende, Lukas ;
Stolarczyk, Jacek K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (29) :7372-7408
[8]   ELECTROCATALYTIC PROCESS OF CO SELECTIVITY IN ELECTROCHEMICAL REDUCTION OF CO2 AT METAL-ELECTRODES IN AQUEOUS-MEDIA [J].
HORI, Y ;
WAKEBE, H ;
TSUKAMOTO, T ;
KOGA, O .
ELECTROCHIMICA ACTA, 1994, 39 (11-12) :1833-1839
[9]   All-solid-state artificial Z-scheme porous g-C3N4/Sn2S3-DETA heterostructure photocatalyst with enhanced performance in photocatalytic CO2 reduction [J].
Huo, Yao ;
Zhang, Jinfeng ;
Dai, Kai ;
Li, Qiang ;
Lv, Jiali ;
Zhu, Guangping ;
Liang, Changhao .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 241 :528-538
[10]   Partially Oxidized SnS2 Atomic Layers Achieving Efficient Visible-Light-Driven CO2 Reduction [J].
Jiao, Xingchen ;
Li, Xiaodong ;
Jin, Xiuyu ;
Sun, Yongfu ;
Xu, Jiaqi ;
Liang, Liang ;
Ju, Huanxin ;
Zhu, Junfa ;
Pan, Yang ;
Yan, Wensheng ;
Lin, Yue ;
Xie, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (49) :18044-18051