Grain Boundary Characterization and Potential Percolation of the Solid Electrolyte LLZO

被引:10
作者
Fu, Shuo [1 ,2 ]
Arinicheva, Yulia [2 ,3 ]
Hueter, Claas [1 ]
Finsterbusch, Martin [2 ]
Spatschek, Robert [1 ,4 ]
机构
[1] Forschungszentrum Julich, IEK 2, D-52425 Julich, Germany
[2] Forschungszentrum Julich, IEK 1, D-52425 Julich, Germany
[3] Western Norway Univ Appl Sci HVL, Fac Engn & Sci, Dept Safety Chem & Biomed Lab Sci, N-5020 Bergen, Norway
[4] JARA ENERGY, D-52425 Julich, Germany
来源
BATTERIES-BASEL | 2023年 / 9卷 / 04期
关键词
all-solid-state batteries; Li plating; grain boundary network; triple junctions; TRIPLE JUNCTION; LI7LA3ZR2O12; CONNECTIVITY; DISTRIBUTIONS; CONDUCTIVITY; INTERFACE; NETWORKS; TOPOLOGY; TEXTURE;
D O I
10.3390/batteries9040222
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The influence of different processing routes and grain size distributions on the character of the grain boundaries in Li7La3Zr2O12 (LLZO) and the potential influence on failure through formation of percolating lithium metal networks in the solid electrolyte are investigated. Therefore, high quality hot-pressed Li7La3Zr2O12 pellets are synthesised with two different grain size distributions. Based on the electron backscatter diffraction measurements, the grain boundary network including the grain boundary distribution and its connectivity via triple junctions are analysed concerning potential Li plating along certain susceptible grain boundary clusters in the hot-pressed LLZO pellets. Additionally, the study investigates the possibility to interpret short-circuiting caused by Li metal plating or penetration in all-solid-state batteries through percolation mechanisms in the solid electrolyte microstructure, in analogy to grain boundary failure processes in metallic systems.
引用
收藏
页数:14
相关论文
共 44 条
[1]   Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal [J].
Aguesse, Frederic ;
Manalastas, William ;
Buannic, Lucienne ;
Lopez del Amo, Juan Miguel ;
Singh, Gurpreet ;
Llordes, Anna ;
Kilner, John .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) :3808-3816
[2]  
[Anonymous], 2018, J LARGE SCALE RES FA, V4, pA132, DOI DOI 10.17815/JLSRF-4-121-1
[3]  
Arinicheva Y., 2020, ADV CERAMICS ENERGY, P549, DOI DOI 10.1016/B978-0-08-102726-4.00010-7
[4]   Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 [J].
Awaka, Junji ;
Takashima, Akira ;
Kataoka, Kunimitsu ;
Kijima, Norihito ;
Idemoto, Yasushi ;
Akimoto, Junji .
CHEMISTRY LETTERS, 2011, 40 (01) :60-62
[5]   STRUCTURE OF HIGH-ANGLE GRAIN BOUNDARIES [J].
BRANDON, DG .
ACTA METALLURGICA, 1966, 14 (11) :1479-&
[6]   Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte [J].
Cheng, Eric Jianfeng ;
Sharafi, Asma ;
Sakamoto, Jeff .
ELECTROCHIMICA ACTA, 2017, 223 :85-91
[7]   Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes [J].
Cheng, Lei ;
Chen, Wei ;
Kunz, Martin ;
Persson, Kristin ;
Tamura, Nobumichi ;
Chen, Guoying ;
Doeff, Marca .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (03) :2073-2081
[8]   CREEP CAVITATION AND GRAIN-BOUNDARY STRUCTURE IN TYPE-304 STAINLESS-STEEL [J].
DON, J ;
MAJUMDAR, S .
ACTA METALLURGICA, 1986, 34 (05) :961-967
[9]   Triple junction and grain boundary character distributions in metallic materials [J].
Fortier, P ;
Miller, WA ;
Aust, KT .
ACTA MATERIALIA, 1997, 45 (08) :3459-3467
[10]  
FORTIER P, 1995, ACTA METALL MATER, V43, P339