Single-photon detection using high-temperature superconductors

被引:50
|
作者
Charaev, I. [1 ,2 ]
Bandurin, D. A. [3 ]
Bollinger, A. T. [4 ]
Phinney, I. Y. [1 ]
Drozdov, I. [4 ]
Colangelo, M. [1 ]
Butters, B. A. [1 ]
Taniguchi, T. [5 ]
Watanabe, K. [6 ]
He, X. [4 ,7 ]
Medeiros, O. [1 ]
Bozovic, I. [4 ,7 ]
Jarillo-Herrero, P. [1 ]
Berggren, K. K. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Univ Zurich, Zurich, Switzerland
[3] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore, Singapore
[4] Brookhaven Natl Lab, Upton, NY USA
[5] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Japan
[6] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba, Japan
[7] Yale Univ, Dept Chem, New Haven, CT USA
关键词
INFRARED PHOTONS; SYSTEM; EFFICIENCY;
D O I
10.1038/s41565-023-01325-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Superconducting single-photon detectors are critical for quantum communication, fluorescence lifetime imaging and remote sensing, but commonly operate at very low temperatures. Now, high-temperature cuprate superconducting nanowires enable single-photon detection up to 25 K. The detection of individual quanta of light is important for quantum communication, fluorescence lifetime imaging, remote sensing and more. Due to their high detection efficiency, exceptional signal-to-noise ratio and fast recovery times, superconducting-nanowire single-photon detectors (SNSPDs) have become a critical component in these applications. However, the operation of conventional SNSPDs requires costly cryocoolers. Here we report the fabrication of two types of high-temperature superconducting nanowires. We observe linear scaling of the photon count rate on the radiation power at the telecommunications wavelength of 1.5 mu m and thereby reveal single-photon operation. SNSPDs made from thin flakes of Bi2Sr2CaCu2O8+delta exhibit a single-photon response up to 25 K, and for SNSPDs from La1.55Sr0.45CuO4/La2CuO4 bilayer films, this response is observed up to 8 K. While the underlying detection mechanism is not fully understood yet, our work expands the family of materials for SNSPD technology beyond the liquid helium temperature limit and suggests that even higher operation temperatures may be reached using other high-temperature superconductors.
引用
收藏
页码:343 / +
页数:8
相关论文
共 50 条
  • [31] High-temperature superconductors
    Lieber, CM
    Yang, PD
    SCIENCE, 1997, 277 (5334) : 1909 - 1910
  • [32] HIGH-TEMPERATURE SUPERCONDUCTORS
    WEST, AR
    BRITISH CERAMIC TRANSACTIONS AND JOURNAL, 1990, 89 (01): : R7 - R7
  • [33] HIGH-TEMPERATURE SUPERCONDUCTORS
    BONTEMPS, N
    COMBESCOT, R
    MONOD, P
    RECHERCHE, 1992, 23 (240): : 180 - 187
  • [34] Using high-temperature superconductors for levitation applications
    Hull, JR
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1999, 51 (07): : 13 - 18
  • [35] MAGNETIC SHIELDING USING HIGH-TEMPERATURE SUPERCONDUCTORS
    GANESAN, V
    SRINIVASAN, R
    ASWATHY, S
    CHANDRASEKARAN, KD
    SRINIVAS, B
    RAJU, UVV
    RAO, GVS
    GOPALAN, R
    RAJASEKARAN, T
    BULLETIN OF MATERIALS SCIENCE, 1994, 17 (01) : 87 - 93
  • [37] Using high-temperature superconductors for levitation applications
    John R. Hull
    JOM, 1999, 51 : 13 - 18
  • [38] Using high-temperature superconductors for levitation applications
    Argonne National Laboratory, ET-335, Argonne, IL 60439, United States
    JOM, 7 (13-18):
  • [39] III-Nitride High Temperature Single-Photon Sources
    Bhattacharya, Pallab
    Deshpande, Saniya
    Frost, Thomas
    Hazari, Arnab
    NOVEL IN-PLANE SEMICONDUCTOR LASERS XIV, 2015, 9382
  • [40] Characterization of Milled High-Pressure High-Temperature NV-Center Nanodiamonds for Single-Photon Source Applications
    Kurochkin, N. S.
    Savinov, S. A.
    Bi, Dongxue
    Sychev, V. V.
    Eliseev, S. P.
    Gritsienko, A., V
    JOURNAL OF RUSSIAN LASER RESEARCH, 2021, 42 (06) : 713 - 720