Conditional self-attention generative adversarial network with differential evolution algorithm for imbalanced data classification

被引:10
|
作者
Niu, Jiawei [1 ]
Liu, Zhunga [1 ]
Pan, Quan [1 ]
Yang, Yanbo [1 ]
LI, Yang [1 ]
机构
[1] Northwestern Polytech Univ, Dept Automat, Xian 710072, Peoples R China
关键词
Classification; Generative adversarial net-work; Imbalanced data; Optimization; Over-sampling; NEURAL-NETWORKS;
D O I
10.1016/j.cja.2022.09.014
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Imbalanced data classification is an important research topic in real-world applications, like fault diagnosis in an aircraft manufacturing system. The over-sampling method is often used to solve this problem. It generates samples according to the distance between minority data. However, the traditional over-sampling method may change the original data distribution, which is harmful to the classification performance. In this paper, we propose a new method called Conditional SelfAttention Generative Adversarial Network with Differential Evolution (CSAGAN-DE) for imbalanced data classification. The new method aims at improving the classification performance of minority data by enhancing the quality of the generation of minority data. In CSAGAN-DE, the minority data are fed into the self-attention generative adversarial network to approximate the data distribution and create new data for the minority class. Then, the differential evolution algorithm is employed to automatically determine the number of generated minority data for achieving a satisfactory classification performance. Several experiments are conducted to evaluate the performance of the new CSAGAN-DE method. The results show that the new method can efficiently improve the classification performance compared with other related methods.(c) 2022 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:303 / 315
页数:13
相关论文
共 50 条
  • [31] Effective data generation for imbalanced learning using conditional generative adversarial networks
    Douzas, Georgios
    Bacao, Fernando
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 91 : 464 - 471
  • [32] Occluded offline handwritten Chinese character inpainting via generative adversarial network and self-attention mechanism
    Song, Ge
    Li, Jianwu
    Wang, Zheng
    NEUROCOMPUTING, 2020, 415 : 146 - 156
  • [33] A Novel Small Samples Fault Diagnosis Method Based on the Self-attention Wasserstein Generative Adversarial Network
    Zhiwu Shang
    Jie Zhang
    Wanxiang Li
    Shiqi Qian
    Jingyu Liu
    Maosheng Gao
    Neural Processing Letters, 2023, 55 : 6377 - 6407
  • [34] A Novel Small Samples Fault Diagnosis Method Based on the Self-attention Wasserstein Generative Adversarial Network
    Shang, Zhiwu
    Zhang, Jie
    Li, Wanxiang
    Qian, Shiqi
    Liu, Jingyu
    Gao, Maosheng
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 6377 - 6407
  • [35] A clustering and generative adversarial networks-based hybrid approach for imbalanced data classification
    Ding H.
    Cui X.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (06) : 8003 - 8018
  • [36] Missing Data Imputation for Online Monitoring of Power Equipment Based on Self-attention Generative Adversarial Networks
    Zhou Y.
    Lin M.
    Chen J.
    Bai Z.
    Chen M.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (05): : 1795 - 1809
  • [37] Generative Adversarial Network for Class-Conditional Data Augmentation
    Lee, Jeongmin
    Yoon, Younkyoung
    Kwon, Junseok
    APPLIED SCIENCES-BASEL, 2020, 10 (23): : 1 - 15
  • [38] Defense method of smart grid GPS spoofing attack based on improved self-attention generative adversarial network
    Li Y.
    Yang S.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2021, 41 (11): : 100 - 106
  • [39] Research on clothing patterns generation based on multi-scales self-attention improved generative adversarial network
    Yu, Zi-yan
    Luo, Tian-jian
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2021, 14 (04) : 647 - 663
  • [40] Application of Generative Adversarial Networks and Shapley Algorithm Based on Easy Data Augmentation for Imbalanced Text Data
    Wu, Jheng-Long
    Huang, Shuoyen
    APPLIED SCIENCES-BASEL, 2022, 12 (21):