Conditional self-attention generative adversarial network with differential evolution algorithm for imbalanced data classification

被引:10
|
作者
Niu, Jiawei [1 ]
Liu, Zhunga [1 ]
Pan, Quan [1 ]
Yang, Yanbo [1 ]
LI, Yang [1 ]
机构
[1] Northwestern Polytech Univ, Dept Automat, Xian 710072, Peoples R China
关键词
Classification; Generative adversarial net-work; Imbalanced data; Optimization; Over-sampling; NEURAL-NETWORKS;
D O I
10.1016/j.cja.2022.09.014
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Imbalanced data classification is an important research topic in real-world applications, like fault diagnosis in an aircraft manufacturing system. The over-sampling method is often used to solve this problem. It generates samples according to the distance between minority data. However, the traditional over-sampling method may change the original data distribution, which is harmful to the classification performance. In this paper, we propose a new method called Conditional SelfAttention Generative Adversarial Network with Differential Evolution (CSAGAN-DE) for imbalanced data classification. The new method aims at improving the classification performance of minority data by enhancing the quality of the generation of minority data. In CSAGAN-DE, the minority data are fed into the self-attention generative adversarial network to approximate the data distribution and create new data for the minority class. Then, the differential evolution algorithm is employed to automatically determine the number of generated minority data for achieving a satisfactory classification performance. Several experiments are conducted to evaluate the performance of the new CSAGAN-DE method. The results show that the new method can efficiently improve the classification performance compared with other related methods.(c) 2022 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:303 / 315
页数:13
相关论文
共 50 条
  • [1] Conditional self-attention generative adversarial network with differential evolution algorithm for imbalanced data classification
    Jiawei NIU
    Zhunga LIU
    Quan PAN
    Yanbo YANG
    Yang LI
    Chinese Journal of Aeronautics, 2023, 36 (03) : 303 - 315
  • [2] Conditional self-attention generative adversarial network with differential evolution algorithm for imbalanced data classification
    Jiawei NIU
    Zhunga LIU
    Quan PAN
    Yanbo YANG
    Yang LI
    Chinese Journal of Aeronautics , 2023, (03) : 303 - 315
  • [3] Self-attention generative adversarial network with the conditional constraint
    Jia Y.
    Ma L.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (06): : 163 - 170
  • [4] SELF-ATTENTION GENERATIVE ADVERSARIAL NETWORK FOR SPEECH ENHANCEMENT
    Huy Phan
    Nguyen, Huy Le
    Chen, Oliver Y.
    Koch, Philipp
    Duong, Ngoc Q. K.
    McLoughlin, Ian
    Mertins, Alfred
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7103 - 7107
  • [5] QAR Data Imputation Using Generative Adversarial Network with Self-Attention Mechanism
    Zhao, Jingqi
    Rong, Chuitian
    Dang, Xin
    Sun, Huabo
    BIG DATA MINING AND ANALYTICS, 2024, 7 (01): : 12 - 28
  • [6] Self-attention generative adversarial networks applied to conditional music generation
    Pedro Lucas Tomaz Neves
    José Fornari
    João Batista Florindo
    Multimedia Tools and Applications, 2022, 81 : 24419 - 24430
  • [7] Self-attention generative adversarial networks applied to conditional music generation
    Tomaz Neves, Pedro Lucas
    Fornari, Jose
    Florindo, Joao Batista
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (17) : 24419 - 24430
  • [8] Self-Attention conditional generative adversarial network optimised with crayfish optimization algorithm for improving cyber security in cloud computing
    Jose, G. Sahaya Stalin
    Sugitha, G.
    Lakshmi, S. Ayshwarya
    Chaluvaraj, Preethi Bangalore
    COMPUTERS & SECURITY, 2024, 140
  • [9] LinesToFacePhoto: Face Photo Generation From Lines With Conditional Self-Attention Generative Adversarial Network
    Li, Yuhang
    Chen, Xuejin
    Wu, Feng
    Zha, Zheng-Jun
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 2323 - 2331
  • [10] Improved self-attention generative adversarial adaptation network-based melanoma classification
    Gowthami, S.
    Harikumar, R.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4113 - 4122