Stability of the 3D Boussinesq equations with partial dissipation near the hydrostatic balance

被引:0
作者
Jiang, Liya [1 ]
Wei, Youhua [1 ]
Yang, Kaige [1 ]
机构
[1] Chengdu Univ Technol, Coll Math & Phys, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
基金
中国国家自然科学基金;
关键词
Boussinesq equations; fractional dissipation; hydrostatic balance; stability; GLOBAL WELL-POSEDNESS; REGULARITY;
D O I
10.1002/mma.9230
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Boussinesq equations with partial or fractional dissipation not only naturally generalize the classical Boussinesq equations but also are physically relevant and mathematically important. Unfortunately, it is not often well-understood for many ranges of fractional powers. This paper focuses on a system of the 3D Boussinesq equations with fractional horizontal (-Delta(h))(beta)theta.. u and (-Delta(h))(alpha)u dissipation and proves that if the initial data (u0,..0) in the Sobolev space H3(R3) are close enough to the hydrostatic balance state, respectively, the equations with alpha, beta epsilon(1/2, 1] then always lead to a steady solution.
引用
收藏
页码:13012 / 13026
页数:15
相关论文
共 34 条
[21]  
Majda A. J., 2003, Introduction to PDEs and Waves for the Atmosphere and Ocean, V9
[22]   On the global well-posedness of a class of Boussinesq-Navier-Stokes systems [J].
Miao, Changxing ;
Xue, Liutang .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (06) :707-735
[23]  
Nirenberg L., 1959, ANN SCUOLA NORM-SCI, V13, P115
[24]  
Pedlosky J., 1987, Geophysical Fluid Dynamics, Vsecond
[25]   Local existence and blow-up criterion for the generalized Boussinesq equations in Besov spaces [J].
Qiu, Hua ;
Du, Yi ;
Yao, Zheng'an .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (01) :86-98
[26]  
Tao T, 2006, CBMS Reg. Conf. Ser. Math., V106
[27]   The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion [J].
Wu, Jiahong ;
Xu, Xiaojing ;
Ye, Zhuan .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 115 :187-217
[28]   REGULARITY RESULTS FOR THE 2D BOUSSINESQ EQUATIONS WITH CRITICAL OR SUPERCRITICAL DISSIPATION [J].
Wu, Jiahong ;
Xu, Xiaojing ;
Xue, Liutang ;
Ye, Zhuan .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (07) :1963-1997
[29]   On the global regularity of N-dimensional generalized Boussinesq system [J].
Yamazaki, Kazuo .
APPLICATIONS OF MATHEMATICS, 2015, 60 (02) :109-133
[30]   The 3D incompressible magnetohydrodynamic equations with fractional partial dissipation [J].
Yang, Wanrong ;
Jiu, Quansen ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) :630-652