A Novel Data Augmentation Method for Improved Visual Crack Detection Using Generative Adversarial Networks

被引:20
|
作者
Branikas, Efstathios [1 ]
Murray, Paul [1 ]
West, Graeme [1 ]
机构
[1] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XQ, Scotland
关键词
Generative adversarial networks; Inspection; Image segmentation; Visualization; Task analysis; Data models; Data augmentation; Crack segmentation; generative adversarial networks (GANs); nuclear inspections; data augmentation; image-to-image translation; FAULT-DETECTION; CLASSIFICATION; INSPECTION;
D O I
10.1109/ACCESS.2023.3251988
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Condition monitoring and inspection are core activities for assessing and evaluating the health of critical infrastructure spanning from road networks to nuclear power stations. Defect detection on visual inspections of such assets is a field that enjoys increasing attention. However, data-based models are prone to a lack of available data depicting cracks of various modalities and present a great data imbalance. This paper introduces a novel data augmentation technique by deploying the CycleGan Generative Adversarial Network (GAN). The proposed model is deployed between different image datasets depicting cracks, with a nuclear application as the main industrial example. The aim of this network is to improve the segmentation accuracy on these datasets using deep convolutional neural networks. The proposed GAN generates realistic images that are challenging to segment and under-represented in the original datasets. Different deep networks are trained with the augmented datasets while introducing no labelling overhead. A comparison is drawn between the performance of the different neural networks on the original data and their augmented counterparts. Extensive experiments suggest that the proposed augmentation method results in superior crack detection in challenging cases across all datasets. This is reflected by the respective increase in the quantitative evaluation metrics.
引用
收藏
页码:22051 / 22059
页数:9
相关论文
共 50 条
  • [1] Improved Generative Adversarial Networks With Filtering Mechanism for Fault Data Augmentation
    Shao, Lexuan
    Lu, Ningyun
    Jiang, Bin
    Simani, Silvio
    Song, Le
    Liu, Zhengyuan
    IEEE SENSORS JOURNAL, 2023, 23 (13) : 15176 - 15187
  • [2] Using Generative Adversarial Networks for Data Augmentation in Android Malware Detection
    Chen, Yi-Ming
    Yang, Chun-Hsien
    Chen, Guo-Chung
    2021 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (DSC), 2021,
  • [3] Data Augmentation for Voiceprint Recognition Using Generative Adversarial Networks
    Lin, Yao-San
    Chen, Hung-Yu
    Huang, Mei-Ling
    Hsieh, Tsung-Yu
    ALGORITHMS, 2024, 17 (12)
  • [4] Efficient Approaches for Data Augmentation by Using Generative Adversarial Networks
    Saha, Pretom Kumar
    Logofatu, Doina
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 386 - 399
  • [5] Data augmentation using generative adversarial networks for robust speech recognition
    Qian, Yanmin
    Hu, Hu
    Tan, Tian
    SPEECH COMMUNICATION, 2019, 114 : 1 - 9
  • [6] Speech emotion recognition using data augmentation method by cycle-generative adversarial networks
    Shilandari, Arash
    Marvi, Hossein
    Khosravi, Hossein
    Wang, Wenwu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (07) : 1955 - 1962
  • [7] Speech emotion recognition using data augmentation method by cycle-generative adversarial networks
    Arash Shilandari
    Hossein Marvi
    Hossein Khosravi
    Wenwu Wang
    Signal, Image and Video Processing, 2022, 16 : 1955 - 1962
  • [8] Wasserstein Generative Adversarial Networks Based Data Augmentation for Radar Data Analysis
    Lee, Hansoo
    Kim, Jonggeun
    Kim, Eun Kyeong
    Kim, Sungshin
    APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [9] SEQUENTIAL IOT DATA AUGMENTATION USING GENERATIVE ADVERSARIAL NETWORKS
    Tschuchnig, Maximilian Ernst
    Ferner, Cornelia
    Wegenkittl, Stefan
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4212 - 4216
  • [10] FabricGAN: an enhanced generative adversarial network for data augmentation and improved fabric defect detection
    Xu, Yiqin
    Zhi, Chao
    Wang, Shuai
    Chen, Jianglong
    Sun, Runjun
    Dong, Zijing
    Yu, Lingjie
    TEXTILE RESEARCH JOURNAL, 2024, 94 (15-16) : 1771 - 1785