Forecasting Steel Production in the World-Assessments Based on Shallow and Deep Neural Networks

被引:5
作者
Mateus, Balduino Cesar [1 ,2 ]
Mendes, Mateus [3 ,4 ]
Farinha, Jose Torres [4 ,5 ]
Cardoso, Antonio J. Marques [2 ]
Assis, Rui [1 ]
da Costa, Lucelio M. [6 ]
机构
[1] Lusofona Univ, EIGeS Res Ctr Ind Engn Management & Sustainabil, Campo Grande 376, P-1749024 Lisbon, Portugal
[2] Univ Beira Interior, CISE Electromechatron Syst Res Ctr, P-6201001 Covilha, Portugal
[3] Polytech Coimbra, Inst Super Engn Coimbra, P-3045093 Coimbra, Portugal
[4] Univ Coimbra, Inst Syst & Robot, P-3004531 Coimbra, Portugal
[5] Univ Coimbra, Ctr Mech Engn Mat & Proc CEMMPRE, P-3030788 Coimbra, Portugal
[6] Univ Coimbra, Dept Elect Engn, P-3030788 Coimbra, Portugal
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 01期
关键词
steel production; time series; neural networks; CNN; MLP; LSTM; GRU; CLASSIFICATION; PREDICTION; INDUSTRY; TRENDS; MODEL;
D O I
10.3390/app13010178
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Forecasting algorithms have been used to support decision making in companies, and it is necessary to apply approaches that facilitate a good forecasting result. The present paper describes assessments based on a combination of different neural network models, tested to forecast steel production in the world. The main goal is to find the best machine learning model that fits the steel production data in the world to make a forecast for a nine-year period. The study is important for understanding the behavior of the models and sensitivity to hyperparameters of convolutional LSTM and GRU recurrent neural networks. The results show that for long-term prediction, the GRU model is easier to train and provides better results. The article contributes to the validation of the use of other variables that are correlated with the steel production variable, thus increasing forecast accuracy.
引用
收藏
页数:17
相关论文
共 77 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Al Badawi A, 2020, Arxiv, DOI arXiv:1811.00778
[3]   New globally convergent training scheme based on the resilient propagation algorithm [J].
Anastasladis, AD ;
Magoulas, GD ;
Vrahatis, MN .
NEUROCOMPUTING, 2005, 64 (64) :253-270
[4]  
Anderson K., 2018, WORLD SCI REFERENCE, P545, DOI [10.1142/9789813274754_0020, DOI 10.1142/9789813274754_0020]
[5]  
Arya S., 2019, 2019 INT C ISS CHALL, V1, P1, DOI [10.1109/ICICT46931.2019.8977648, DOI 10.1109/ICICT46931.2019.8977648]
[6]  
Asri H., 2021, Procedia Computer Science, V191, P200, DOI [10.1016/j.procs.2021.07.025, DOI 10.1016/J.PROCS.2021.07.025]
[7]   Forecasting the coal production: Hubbert curve application on Turkey's lignite fields [J].
Berk, Istemi ;
Ediger, Volkan S. .
RESOURCES POLICY, 2016, 50 :193-203
[8]   Online phoneme recognition using multi-layer perceptron networks combined with recurrent non-linear autoregressive neural networks with exogenous inputs [J].
Bonilla Cardona, Diana A. ;
Nedjah, Nadia ;
Mourelle, Luiza M. .
NEUROCOMPUTING, 2017, 265 :78-90
[9]   A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant [J].
Bouzerdoum, M. ;
Mellit, A. ;
Pavan, A. Massi .
SOLAR ENERGY, 2013, 98 :226-235
[10]  
Carilier M., 2021, DISTRIBUTION STEEL E