A low-rank spectral method for learning Markov models

被引:1
作者
Bi, Shujun [1 ]
Yin, Zhen [1 ]
Weng, Yihong [1 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-rank Markov chain; Low-rank spectral estimator; Lipschitzian error bound; Statistical upper bound; ERROR-BOUNDS; OPTIMIZATION;
D O I
10.1007/s11590-022-01882-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper concerns with the problem of estimating the transition matrix of a low-rank discrete-state Markov model from its state-transition trajectories. We propose a low-rank spectral method via the best rank-r approximation of the spectral estimator based on the matrix elementwise l(q) (q >= 1) norm distance. Specifically, we establishing the Lipschitzian type error bound for the rank-constrained transition matrix set. Then, we prove a statistical upper bound for the estimation error of the proposed estimator. Numerical comparisons with the rank-constrained maximum likelihood estimator which computed by DC (difference of convex function) programming algorithm (Zhu et al. in Oper Res, 2021. https://doi.org/10.1287/opre.2021.2115) illustrate the merits of the proposed estimator in terms of the recoverability and the required computing time.
引用
收藏
页码:143 / 162
页数:20
相关论文
共 27 条
[1]  
Aze D., 2003, ESAIM P, V13, P1
[2]   The Spacey Random Walk: A Stochastic Process for Higher-Order Data [J].
Benson, Austin R. ;
Gleich, David F. ;
Lim, Lek-Heng .
SIAM REVIEW, 2017, 59 (02) :321-345
[3]   Error bounds for rank constrained optimization problems and applications [J].
Bi, Shujun ;
Pan, Shaohua .
OPERATIONS RESEARCH LETTERS, 2016, 44 (03) :336-341
[4]   WEAK SHARP MINIMA IN MATHEMATICAL-PROGRAMMING [J].
BURKE, JV ;
FERRIS, MC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) :1340-1359
[5]   Low-Rank Matrix Recovery with Composite Optimization: Good Conditioning and Rapid Convergence [J].
Charisopoulos, Vasileios ;
Chen, Yudong ;
Davis, Damek ;
Diaz, Mateo ;
Ding, Lijun ;
Drusvyatskiy, Dmitriy .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2021, 21 (06) :1505-1593
[6]   SPECTRAL METHOD AND REGULARIZED MLE ARE BOTH OPTIMAL FOR TOP-K RANKING [J].
Chen, Yuxin ;
Fan, Jianqing ;
Ma, Cong ;
Wang, Kaizheng .
ANNALS OF STATISTICS, 2019, 47 (04) :2204-2235
[7]   ADAPTIVE LOW-NONNEGATIVE-RANK APPROXIMATION FOR STATE AGGREGATION OF MARKOV CHAINS [J].
Duan, Yaqi ;
Wang, Mengdi ;
Wen, Zaiwen ;
Yuan, Yaxiang .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) :244-278
[8]   Max-norm optimization for robust matrix recovery [J].
Fang, Ethan X. ;
Liu, Han ;
Toh, Kim-Chuan ;
Zhou, Wen-Xin .
MATHEMATICAL PROGRAMMING, 2018, 167 (01) :5-35
[9]  
Hoekstra A., 1983, MARKOV CHAINS FINITE
[10]  
Huang Q.Q., 2016, ARXIV160206586