Large deviations for high minima of Gaussian processes with nonnegatively correlated increments

被引:0
作者
Selk, Zachary [1 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON, Canada
关键词
Large deviations; Gaussian processes; FRACTIONAL BROWNIAN-MOTION; HIGH-LEVEL EXCURSION; MAXIMUM; SOJOURNS; POINT;
D O I
10.1016/j.spl.2023.110001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we prove large deviations principles for high minima of Gaussian processes with nonnegatively correlated increments on arbitrary intervals. Furthermore, we prove large deviations principles for the increments of such processes on intervals [������, ������] where ������- ������is either less than the increment or twice the increment, assuming stationarity of the increments. As a chief example, we consider fractional Brownian motion and fractional Gaussian noise for ������g 1/2.
引用
收藏
页数:10
相关论文
共 21 条
[1]   ON THE EXISTENCE OF PATHS BETWEEN POINTS IN HIGH LEVEL EXCURSION SETS OF GAUSSIAN RANDOM FIELDS [J].
Adler, Robert J. ;
Moldavskaya, Elina ;
Samorodnitsky, Gennady .
ANNALS OF PROBABILITY, 2014, 42 (03) :1020-1053
[2]   SIGNAL-DETECTION IN FRACTIONAL GAUSSIAN-NOISE [J].
BARTON, RJ ;
POOR, HV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :943-959
[3]   Pricing under rough volatility [J].
Bayer, Christian ;
Friz, Peter ;
Gatheral, Jim .
QUANTITATIVE FINANCE, 2016, 16 (06) :887-904
[4]   MAXIMUM AND HIGH LEVEL EXCURSION OF A GAUSSIAN PROCESS WITH STATIONARY INCREMENTS [J].
BERMAN, SM .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (04) :1247-+
[5]   THE MAXIMUM OF A GAUSSIAN PROCESS WITH NONCONSTANT VARIANCE - A SHARP BOUND FOR THE DISTRIBUTION TAIL [J].
BERMAN, SM ;
KONO, N .
ANNALS OF PROBABILITY, 1989, 17 (02) :632-650
[7]  
BERMAN SM, 1985, ANN I H POINCARE-PR, V21, P383
[9]  
BERMAN SM, 1985, ANN I H POINCARE-PR, V21, P47
[10]  
BERMAN SM, 1987, PROBAB THEORY REL, V74, P113