Network pharmacology and molecular docking reveal potential mechanism of esculetin in the treatment of ulcerative colitis

被引:2
|
作者
Cai, Ting [1 ]
Cai, Bin [2 ,3 ]
机构
[1] Nanjing Med Univ, Wuxi Peoples Hosp, Wuxi Med Ctr, Dept Nephrol,Affiliated Wuxi Peoples Hosp, Wuxi, Peoples R China
[2] Nanjing Univ Chinese Med, Dept Anorectal Surg, Wuxi Hosp Affiliated, Wuxi, Peoples R China
[3] Nanjing Univ Chinese Med, Dept Anorectal Surg, Wuxi Hosp Affiliated, 8,Zhongnan West Rd, Wuxi 214071, Peoples R China
基金
中国国家自然科学基金;
关键词
esculetin; molecular docking; network pharmacology; prolactin signaling pathway; ulcerative colitis; INFLAMMATORY-BOWEL-DISEASE; PREVALENCE; DOPAMINE;
D O I
10.1097/MD.0000000000035852
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of the colonic mucosa. Esculetin is a type of natural coumarin that has many pharmacological activities such as antioxidant, anticancer, anti-inflammatory, etc. A previous study showed that esculetin improved intestinal inflammation and reduced serum proinflammatory cytokines in UC. The present study aimed to utilize network pharmacology and molecular docking to explore the potential mechanism of esculetin against UC. The potential gene targets of esculetin were predicted through SwissTargetPrediction and Super-PRED web servers. UC-related genes were obtained from DisGeNet, OMIM, and GeneCards databases. The overlap between gene targets of esculetin and UC-related genes were identified as the potential targets of esculetin against UC. The interaction between these overlapping genes was analyzed by the STRING database and the core genes were identified by Cytoscape platform. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the core genes were then performed. And the results of these analyses were further confirmed through molecular docking. A total of 50 overlapping genes were identified as the potential action targets of esculetin against UC. Among them, 10 genes (AKT1, STAT1, CCND1, SRC, PTGS2, EGFR, NFKB1, ESR1, MMP9, SERPINE1) were finally identified as the core genes. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results showed that the top signaling pathway associated with the core genes of esculetin against UC was the prolactin (PRL) signaling pathway. Molecular docking results showed that esculetin has a strong binding affinity to the core genes, as well as PRL and prolactin receptor. This study suggests that esculetin may have a crucial impact on UC through the PRL signaling pathway and provides insights into the potential mechanism of esculetin in the treatment of UC, which may shed light on the mechanism and treatment of UC.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Network pharmacology and molecular docking reveal the immunomodulatory mechanism of rhubarb peony decoction for the treatment of ulcerative colitis and irritable bowel syndrome
    Zhai, Leilei
    Yang, Weiming
    Li, Dianrong
    Zhou, Wei
    Cui, Min
    Yao, Ping
    JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES, 2023, 26 : 11225
  • [2] Network Pharmacology and Molecular Docking Analysis on Molecular Mechanism of Qingzi Zhitong Decoction in the Treatment of Ulcerative Colitis
    Shou, Xintian
    Wang, Yumeng
    Zhang, Xuesong
    Zhang, Yanju
    Yang, Yan
    Duan, Chenglin
    Yang, Yihan
    Jia, Qiulei
    Yuan, Guozhen
    Shi, Jingjing
    Shi, Shuqing
    Cui, Hanming
    Hu, Yuanhui
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [3] Mechanism of Jiawei Zhengqi Powder in the Treatment of Ulcerative Colitis Based on Network Pharmacology and Molecular Docking
    Zhao, Chao
    Zhi, ChenYang
    Zhou, JianHua
    BIOMED RESEARCH INTERNATIONAL, 2023, 2023
  • [4] The potential mechanism of Bletilla striata in the treatment of ulcerative colitis determined through network pharmacology, molecular docking, and in vivo experimental verification
    Gong, Shanshan
    Lv, Ronghua
    Fan, Yihong
    Shi, Yichun
    Zhang, Mieqing
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2023, 396 (05) : 983 - 1000
  • [5] The potential mechanism of Bletilla striata in the treatment of ulcerative colitis determined through network pharmacology, molecular docking, and in vivo experimental verification
    Shanshan Gong
    Ronghua Lv
    Yihong Fan
    Yichun Shi
    Mieqing Zhang
    Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396 : 983 - 1000
  • [6] Network pharmacology integrated with molecular docking and molecular dynamics simulations to explore the mechanism of Tongxie Yaofang in the treatment of ulcerative colitis
    Tang, Lili
    Liu, Yuedong
    Tao, Hongwu
    Feng, Wenzhe
    Ren, Cong
    MEDICINE, 2024, 103 (36)
  • [7] Uncovering the Mechanism of Curcuma in the Treatment of Ulcerative Colitis Based on Network Pharmacology, Molecular Docking Technology, and Experiment Verification
    Liu, Suxian
    Li, Qiaodong
    Liu, Fengzhi
    Cao, Hui
    Liu, Jun
    Shan, Jingyi
    Dan, Wenchao
    Yuan, Jianye
    Lin, Jiang
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2021, 2021
  • [8] Using Network Pharmacology and Molecular Docking Technology to Explore the Mechanism of Modified Pulsatilla Decoction in the Treatment of Ulcerative Colitis
    Wu, Tingting
    Yang, Xin
    Xu, Bo
    Zhu, Huiping
    Guo, Jinwei
    Zhou, Yu
    Liang, Guoqiang
    Sun, Hongwen
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (05)
  • [9] Evaluation of the Mechanism of Sinomenii Caulis in Treating Ulcerative Colitis based on Network Pharmacology and Molecular Docking
    Tian, Juan
    Yang, Changgeng
    Wang, Yun
    Zhou, Canlin
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2024, 20 (03) : 195 - 207
  • [10] Molecular Mechanism of Qingchang Suppository in the Treatment of Ulcerative Colitis Based on Network Pharmacology
    Lin, Zhancheng
    Lu, Lu
    Zhu, Lingyu
    LETTERS IN DRUG DESIGN & DISCOVERY, 2023, 20 (01) : 71 - 76