Fast relocking and afterslip-seismicity evolution following the 2015 Mw 8.3 Illapel earthquake in Chile

被引:1
作者
Hormazabal, Joaquin [1 ]
Moreno, Marcos [2 ,3 ]
Ortega-Culaciati, Francisco [1 ,4 ]
Carlos Baez, Juan [5 ]
Pena, Carlos [6 ,7 ]
Sippl, Christian [8 ]
Gonzalez-Vidal, Diego [9 ]
Ruiz, Javier [1 ]
Metzger, Sabrina [6 ]
Yoshioka, Shoichi [10 ,11 ]
机构
[1] Univ Chile, Fac Phys & Math Sci, Dept Geophys, Santiago, Chile
[2] Pontificia Univ Catolica, Dept Struct & Geotech Engn, Santiago, Chile
[3] Millennium Inst Oceanog, IMO, Concepcion, Chile
[4] Data Observ Fdn, ANID Technol Ctr DO210001, Santiago, Chile
[5] Univ Chile, Fac Ciencias Fis & Matemat, Ctr Sismol Nacl, Santiago, Chile
[6] GFZ German Res Ctr Geosci, Helmholtz Ctr Potsdam, Potsdam, Germany
[7] Ruhr Univ Bochum, Inst Geosci, Bochum, Germany
[8] Czech Acad Sci, Inst Geophys, Prague, Czech Republic
[9] Univ Concepcion, Dept Earth Sci, Concepcion, Chile
[10] Kobe Univ, Res Ctr Urban Safety & Secur, Rokkodai Cho 1-1, Kobe, Hyogo 6578501, Japan
[11] Kobe Univ, Grad Sch Sci, Dept Planetol, Rokkodai Cho 1-1, Kobe, Hyogo 6578501, Japan
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
基金
欧洲研究理事会;
关键词
MAULE EARTHQUAKE; SUBDUCTION ZONE; MEGATHRUST EARTHQUAKES; COSEISMIC SLIP; LOCKING; PERU; GPS; DEFORMATION; MODELS; MOTION;
D O I
10.1038/s41598-023-45369-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large subduction earthquakes induce complex postseismic deformation, primarily driven by afterslip and viscoelastic relaxation, in addition to interplate relocking processes. However, these signals are intricately intertwined, posing challenges in determining the timing and nature of relocking. Here, we use six years of continuous GNSS measurements (2015-2021) to study the spatiotemporal evolution of afterslip, seismicity and locking after the 2015 Illapel earthquake (M-w 8.3). Afterslip is inverted from postseismic displacements corrected for nonlinear viscoelastic relaxation modeled using a power-law rheology, and the distribution of locking is obtained from the linear trend of GNSS stations. Our results show that afterslip is mainly concentrated in two zones surrounding the region of largest coseismic slip. The accumulated afterslip (corresponding to M-w 7.8) exceeds 1.5 m, with aftershocks mainly occurring at the boundaries of the afterslip patches. Our results reveal that the region experiencing the largest coseismic slip undergoes rapid relocking, exhibiting the behavior of a persistent velocity weakening asperity, with no observed aftershocks or afterslip within this region during the observed period. The rapid relocking of this asperity may explain the almost regular recurrence time of earthquakes in this region, as similar events occurred in 1880 and 1943.
引用
收藏
页数:15
相关论文
共 69 条
  • [1] A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation
    Aagaard, B. T.
    Knepley, M. G.
    Williams, C. A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2013, 118 (06) : 3059 - 3079
  • [2] ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions
    Altamimi, Zuheir
    Rebischung, Paul
    Metivier, Laurent
    Collilieux, Xavier
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2016, 121 (08) : 6109 - 6131
  • [3] From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle
    Avouac, Jean-Philippe
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 43, 2015, 43 : 233 - 271
  • [4] The Chilean GNSS Network: Current Status and Progress toward Early Warning Applications
    Baez, J. C.
    Leyton, F.
    Troncoso, C.
    del Campo, F.
    Bevis, M.
    Vigny, C.
    Moreno, M.
    Simons, M.
    Kendrick, E.
    Parra, H.
    Blume, F.
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2018, 89 (04) : 1546 - 1554
  • [5] Coseismic slip and early afterslip of the 2015 Illapel, Chile, earthquake: Implications for frictional heterogeneity and coastal uplift
    Barnhart, William D.
    Murray, Jessica R.
    Briggs, Richard W.
    Gomez, Francisco
    Miles, Charles P. J.
    Svarc, Jerry
    Riquelme, Sebastian
    Stressler, Bryan J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2016, 121 (08) : 6172 - 6191
  • [6] The Seismic Network of Chile
    Barrientos, S.
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2018, 89 (02) : 467 - 474
  • [7] Separating rapid relocking, afterslip, and viscoelastic relaxation: An application of the postseismic straightening method to the Maule 2010 cGPS
    Bedford, Jonathan
    Moreno, Marcos
    Li, Shaoyang
    Oncken, Onno
    Carlos Baez, Juan
    Bevis, Michael
    Heidbach, Oliver
    Lange, Dietrich
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2016, 121 (10) : 7618 - 7638
  • [8] Trajectory models and reference frames for crustal motion geodesy
    Bevis, Michael
    Brown, Abel
    [J]. JOURNAL OF GEODESY, 2014, 88 (03) : 283 - 311
  • [9] Blewitt G., 2018, EOS, V99, DOI DOI 10.1029/2018EO104623
  • [10] Post-seismic motion after 3 Chilean megathrust earthquakes: a clue for a linear asthenospheric viscosity
    Boulze, H.
    Fleitout, L.
    Klein, E.
    Vigny, C.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2022, 231 (03) : 1471 - 1478