Biology-guided deep learning predicts prognosis and cancer immunotherapy response

被引:37
作者
Jiang, Yuming [1 ,2 ]
Zhang, Zhicheng [2 ,9 ,10 ]
Wang, Wei [3 ]
Huang, Weicai [1 ]
Chen, Chuanli [4 ]
Xi, Sujuan [5 ]
Ahmad, M. Usman [6 ]
Ren, Yulan [2 ]
Sang, Shengtian [2 ]
Xie, Jingjing [7 ]
Wang, Jen-Yeu [2 ]
Xiong, Wenjun [8 ]
Li, Tuanjie [1 ]
Han, Zhen [1 ]
Yuan, Qingyu [4 ]
Xu, Yikai [4 ]
Xing, Lei [2 ]
Poultsides, George A. [6 ]
Li, Guoxin [1 ]
Li, Ruijiang [2 ]
机构
[1] Southern Med Univ, Nanfang Hosp, Dept Gen Surg, Guangdong Prov Key Lab Precis Med Gastrointestinal, Guangzhou, Peoples R China
[2] Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA
[3] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Dept Gastr Surg, State Key Lab Oncol South China,Canc Ctr, Guangzhou, Peoples R China
[4] Southern Med Univ, Nanfang Hosp, Dept Med Imaging Ctr, Guangzhou, Peoples R China
[5] Sun Yat Sen Univ, Affiliated Hosp 7, Reprod Med Ctr, Shenzhen, Peoples R China
[6] Stanford Univ, Dept Surg, Sch Med, Stanford, CA USA
[7] Univ Calif Davis, Grad Grp Epidemiol, Davis, CA USA
[8] Guangzhou Univ Chinese Med, Guangdong Prov Hosp Chinese Med, Dept Gastrointestinal Surg, Guangzhou, Peoples R China
[9] Chinese Acad Sci, JancsiTech, Shenzhen, Peoples R China
[10] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
关键词
TUMOR; STROMA; CLASSIFICATION; CHEMOTHERAPY; RADIOMICS; PERIOSTIN; SYSTEM; SCORE;
D O I
10.1038/s41467-023-40890-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Substantial progress has been made in using deep learning for cancer detection and diagnosis in medical images. Yet, there is limited success on prediction of treatment response and outcomes, which has important implications for personalized treatment strategies. A significant hurdle for clinical translation of current data-driven deep learning models is lack of interpretability, often attributable to a disconnect from the underlying pathobiology. Here, we present a biology-guided deep learning approach that enables simultaneous prediction of the tumor immune and stromal microenvironment status as well as treatment outcomes from medical images. We validate the model for predicting prognosis of gastric cancer and the benefit from adjuvant chemotherapy in a multi-center international study. Further, the model predicts response to immune checkpoint inhibitors and complements clinically approved biomarkers. Importantly, our model identifies a subset of mismatch repair-deficient tumors that are non-responsive to immunotherapy and may inform the selection of patients for combination treatments.
引用
收藏
页数:16
相关论文
共 52 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[3]   An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies [J].
Austin, Peter C. .
MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (03) :399-424
[4]   Therapeutic Targeting of the Tumor Microenvironment [J].
Bejarano, Leire ;
Jordao, Marta J. C. ;
Joyce, Johanna A. .
CANCER DISCOVERY, 2021, 11 (04) :933-959
[5]   Predicting cancer outcomes with radiomics and artificial intelligence in radiology [J].
Bera, Kaustav ;
Braman, Nathaniel ;
Gupta, Amit ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (02) :132-146
[6]   Artificial Intelligence in Cancer Research and Precision Medicine [J].
Bhinder, Bhavneet ;
Gilvary, Coryandar ;
Madhukar, Neel S. ;
Elemento, Olivier .
CANCER DISCOVERY, 2021, 11 (04) :900-915
[7]   The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy [J].
Bruni, Daniela ;
Angell, Helen K. ;
Galon, Jerome .
NATURE REVIEWS CANCER, 2020, 20 (11) :662-680
[8]  
Crawshaw M., 2020, arXiv
[9]   Transcriptomic Determinants of Response to Pembrolizumab Monotherapy across Solid Tumor Types [J].
Cristescu, Razvan ;
Nebozhyn, Michael ;
Zhang, Chunsheng ;
Albright, Andrew ;
Kobie, Julie ;
Huang, Lingkang ;
Zhao, Qing ;
Wang, Anran ;
Ma, Hua ;
Cao, Z. Alexander ;
Morrissey, Michael ;
Ribas, Antoni ;
Grivas, Petros ;
Cescon, David W. ;
McClanahan, Terrill K. ;
Snyder, Alexandra ;
Ayers, Mark ;
Lunceford, Jared ;
Loboda, Andrey .
CLINICAL CANCER RESEARCH, 2022, 28 (08) :1680-1689
[10]   Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy [J].
Cristescu, Razvan ;
Mogg, Robin ;
Ayers, Mark ;
Albright, Andrew ;
Murphy, Erin ;
Yearley, Jennifer ;
Sher, Xinwei ;
Liu, Xiao Qiao ;
Lu, Hongchao ;
Nebozhyn, Michael ;
Zhang, Chunsheng ;
Lunceford, Jared ;
Joe, Andrew ;
Cheng, Jonathan ;
Webber, Andrea L. ;
Ibrahim, Nageatte ;
Plimack, Elizabeth R. ;
Ott, Patrick A. ;
Seiwert, Tanguy ;
Ribas, Antoni ;
McClanahan, Terrill K. ;
Tomassini, Joanne E. ;
Loboda, Andrey ;
Kaufman, David .
SCIENCE, 2018, 362 (6411) :197-+