Identifying biomarkers for tDCS treatment response in Alzheimer's disease patients: a machine learning approach using resting-state EEG classification

被引:9
作者
Andrade, Suellen Marinho [1 ]
da Silva-Sauer, Leandro [1 ]
de Carvalho, Carolina Dias [1 ]
de Araujo, Elidianne Layanne Medeiros [1 ]
Lima, Eloise de Oliveira [1 ]
Fernandes, Fernanda Maria Lima [2 ]
Moreira, Karen Lucia de Araujo Freitas [3 ]
Camilo, Maria Eduarda [3 ]
Andrade, Lisieux Marie Marinho dos Santos [4 ]
Borges, Daniel Tezoni [5 ]
da Silva Filho, Edson Meneses [5 ]
Lindquist, Ana Raquel [5 ]
Pegado, Rodrigo [5 ]
Morya, Edgard [6 ]
Yamauti, Seidi Yonamine [6 ]
Alves, Nelson Torro [7 ]
Fernandez-Calvo, Bernardino [7 ,8 ,9 ]
de Souza Neto, Jose Mauricio Ramos [2 ]
机构
[1] Univ Fed Paraiba, Aging & Neurosci Lab, Joao Pessoa, PB, Brazil
[2] Univ Fed Paraiba, Ctr Alternat & Renewable Energies CEAR, Dept Elect Engn, Joao Pessoa, PB, Brazil
[3] Univ Fed Paraiba, Dept Physiotherapy, Lab Ergon & Hlth, Joao Pessoa, PB, Brazil
[4] Univ Fed Ceara, Dept Informat Technol, Crateus, Brazil
[5] Univ Fed Rio Grande do Norte, Dept Physiotherapy, Natal, RN, Brazil
[6] Edmond & Lily Safra Int Inst Neurosci IIN ELS, Macaiba, RN, Brazil
[7] Univ Fed Paraiba, Dept Psychol, Joao Pessoa, Brazil
[8] Univ Cordoba, Fac Educ Sci, Dept Psychol, Cordoba, Spain
[9] Maimonides Biomed Res Inst Cordoba IMIBIC, Cordoba, Spain
关键词
Alzheimer's disease; electroencephalography; transcranial direct current stimulation; artificial intelligence; machine learning; DIRECT-CURRENT STIMULATION; MILD COGNITIVE IMPAIRMENT; DIAGNOSIS;
D O I
10.3389/fnhum.2023.1234168
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
BackgroundTranscranial direct current stimulation (tDCS) is a promising treatment for Alzheimer's Disease (AD). However, identifying objective biomarkers that can predict brain stimulation efficacy, remains a challenge. The primary aim of this investigation is to delineate the cerebral regions implicated in AD, taking into account the existing lacuna in comprehension of these regions. In pursuit of this objective, we have employed a supervised machine learning algorithm to prognosticate the neurophysiological outcomes resultant from the confluence of tDCS therapy plus cognitive intervention within both the cohort of responders and non-responders to antecedent tDCS treatment, stratified on the basis of antecedent cognitive outcomes.MethodsThe data were obtained through an interventional trial. The study recorded high-resolution electroencephalography (EEG) in 70 AD patients and analyzed spectral power density during a 6 min resting period with eyes open focusing on a fixed point. The cognitive response was assessed using the AD Assessment Scale-Cognitive Subscale. The training process was carried out through a Random Forest classifier, and the dataset was partitioned into K equally-partitioned subsamples. The model was iterated k times using K-1 subsamples as the training bench and the remaining subsample as validation data for testing the model.ResultsA clinical discriminating EEG biomarkers (features) was found. The ML model identified four brain regions that best predict the response to tDCS associated with cognitive intervention in AD patients. These regions included the channels: FC1, F8, CP5, Oz, and F7.ConclusionThese findings suggest that resting-state EEG features can provide valuable information on the likelihood of cognitive response to tDCS plus cognitive intervention in AD patients. The identified brain regions may serve as potential biomarkers for predicting treatment response and maybe guide a patient-centered strategy.Clinical Trial Registrationhttps://classic.clinicaltrials.gov/ct2/show/NCT02772185?term=NCT02772185&draw=2&rank=1, identifier ID: NCT02772185.
引用
收藏
页数:10
相关论文
共 65 条
[1]   Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification [J].
Al-Kaysi, Alaa M. ;
Al-Ani, Ahmed ;
Loo, Colleen K. ;
Powell, Tamara Y. ;
Martin, Donel M. ;
Breakspear, Michael ;
Boonstra, Tjeerd W. .
JOURNAL OF AFFECTIVE DISORDERS, 2017, 208 :597-603
[2]   Effects of multisite anodal transcranial direct current stimulation combined with cognitive stimulation in patients with Alzheimer's disease and its neurophysiological correlates: A double-blind randomized clinical trial [J].
Andrade, Suellen Marinho ;
Machado, Daniel Gomes da Silva ;
da Silva-Sauerc, Leandro ;
Regis, Claudio Teixeira ;
Torres Teixeira Mendes, Cristina Katya ;
Soares de Araujo, Juliana Sousa ;
Torres de Araujo, Kleyber Dantas ;
Costa, Larissa Pereira ;
Bezerra Sales Queiroz, Maria Eduarda ;
Leitao, Marcio Martins ;
Fernandez-Calvo, Bernardino .
NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2022, 52 (02) :117-127
[3]   Neurostimulation Combined With Cognitive Intervention in Alzheimer's Disease (NeuroAD): Study Protocol of Double-Blind, Randomized, Factorial Clinical Trial [J].
Andrade, Suellen Marinho ;
de Oliveira, Eliane Araujo ;
Alves, Nelson Torro ;
Gomes dos Santos, Ana Cristina ;
Ponce Leon de Mendonca, Camila Teresa ;
Amorim Sampaio, Danielle Dorand ;
Querino Cavalcante da Silva, Edyllaine Elidy ;
Goncalves da Fonseca, Egina Karoline ;
de Almeida Rodrigues, Evelyn Thais ;
Siqueira de Lima, Gabriela Nayara ;
Carvalho, Jamerson ;
Silvestre da Silva, Jessyca Alves ;
Toledo, Manuella ;
Diniz da Rosa, Marine Raquel ;
de Carvalho Gomes, Marcia Queiroz ;
de Oliveira, Melquisedek Monteiro ;
Maia Lemos, Moema Teixeira ;
Lima, Nagylla Gomes ;
Inacio, Penha ;
da Cruz Ribeiro e Rodrigues, Petra Maria ;
Dantas Ferreira, Rayssa Gabriela ;
Cavalcante, Renata ;
Lyra de Brito Aranha, Renata Emanuela ;
Neves, Regina ;
da Costa e Souza, Rodrigo Marmo ;
Portugal, Thaina Magalhaes ;
Nascimento Martins, Wanessa Kallyne ;
Pontes, Vivian ;
de Paiva Fernandes, Thiago Monteiro ;
Contador, Israel ;
Fernandez-Calvo, Bernardino .
FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
[4]   The Alzheimer's Disease Clinical Spectrum Diagnosis and Management [J].
Atri, Alireza .
MEDICAL CLINICS OF NORTH AMERICA, 2019, 103 (02) :263-+
[5]   Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: Recommendations of an expert panel [J].
Babiloni, Claudio ;
Arakaki, Xianghong ;
Azami, Hamed ;
Bennys, Karim ;
Blinowska, Katarzyna ;
Bonanni, Laura ;
Bujan, Ana ;
Carrillo, Maria C. ;
Cichocki, Andrzej ;
de Frutos-Lucas, Jaisalmer ;
Del Percio, Claudio ;
Dubois, Bruno ;
Edelmayer, Rebecca ;
Egan, Gary ;
Epelbaum, Stephane ;
Escudero, Javier ;
Evans, Alan ;
Farina, Francesca ;
Fargo, Keith ;
Fernandez, Alberto ;
Ferri, Raffaele ;
Frisoni, Giovanni ;
Hampel, Harald ;
Harrington, Michael G. ;
Jelic, Vesna ;
Jeong, Jaeseung ;
Jiang, Yang ;
Kaminski, Maciej ;
Kavcic, Voyko ;
Kilborn, Kerry ;
Kumar, Sanjeev ;
Lam, Alice ;
Lim, Lew ;
Lizio, Roberta ;
Lopez, David ;
Lopez, Susanna ;
Lucey, Brendan ;
Maestu, Fernando ;
McGeown, William J. ;
McKeith, Ian ;
Moretti, Davide Vito ;
Nobili, Flavio ;
Noce, Giuseppe ;
Olichney, John ;
Onofrj, Marco ;
Osorio, Ricardo ;
Parra-Rodriguez, Mario ;
Rajji, Tarek ;
Ritter, Petra ;
Soricelli, Andrea .
ALZHEIMERS & DEMENTIA, 2021, 17 (09) :1528-1553
[6]   Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer's disease [J].
Babiloni, Claudio ;
Carducci, Filippo ;
Lizio, Roberta ;
Vecchio, Fabrizio ;
Baglieri, Annalisa ;
Bernardini, Silvia ;
Cavedo, Enrica ;
Bozzao, Alessandro ;
Buttinelli, Carla ;
Esposito, Fabrizio ;
Giubilei, Franco ;
Guizzaro, Antonio ;
Marino, Silvia ;
Montella, Patrizia ;
Quattrocchi, Carlo C. ;
Redolfi, Alberto ;
Soricelli, Andrea ;
Tedeschi, Gioacchino ;
Ferri, Raffaele ;
Rossi-Fedele, Giancarlo ;
Ursini, Francesca ;
Scrascia, Federica ;
Vernieri, Fabrizio ;
Pedersen, Torleif Jan ;
Hardemark, Hans-Goran ;
Rossini, Paolo M. ;
Frisoni, Giovanni B. .
HUMAN BRAIN MAPPING, 2013, 34 (06) :1427-1446
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer's disease: a randomized, placebo-controlled trial [J].
Bystad, Martin ;
Gronli, Ole ;
Rasmussen, Ingrid Daae ;
Gundersen, Nina ;
Nordvang, Lene ;
Wang-Iversen, Henrik ;
Aslaksen, Per M. .
ALZHEIMERS RESEARCH & THERAPY, 2016, 8
[10]   Hemispheric asymmetry reduction in older adults: The HAROLD model [J].
Cabeza, R .
PSYCHOLOGY AND AGING, 2002, 17 (01) :85-100