A universal bound concerning t-intersecting families

被引:0
作者
Frankl, P. [1 ]
机构
[1] Alfred Renyi Inst Math, Realtanoda U 13-15, H-1953 Budapest, Hungary
关键词
finite set; intersection; extremal problem; SYSTEMS;
D O I
10.1007/s10474-023-01373-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A very short inductive proof is given for the maximal size of a k-graph on n vertices in which any two edges overlap in at least t vertices.
引用
收藏
页码:200 / 202
页数:3
相关论文
共 50 条
  • [1] A universal bound concerning t-intersecting families
    P. Frankl
    Acta Mathematica Hungarica, 2023, 171 : 200 - 202
  • [2] An improved universal bound for t-intersecting families
    Frankl, Peter
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 87
  • [3] On t-intersecting families of permutations
    Keller, Nathan
    Lifshitz, Noam
    Minzer, Dor
    Sheinfeld, Ohad
    ADVANCES IN MATHEMATICS, 2024, 445
  • [4] Stability for t-intersecting families of permutations
    Ellis, David
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (01) : 208 - 227
  • [5] ON DIVERSITY OF CERTAIN t-INTERSECTING FAMILIES
    Ku, Cheng Yeaw
    Wong, Kok Bin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (04) : 815 - 829
  • [6] Non-trivial t-intersecting separated families
    Frankl, Peter
    Liu, Erica L. L.
    Wang, Jian
    Yang, Zhe
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 124 - 137
  • [7] Nearly extremal non-trivial cross t-intersecting families and r-wise t-intersecting families
    Cao, Mengyu
    Lu, Mei
    Lv, Benjian
    Wang, Kaishun
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [8] On t-intersecting families of signed sets and permutations
    Borg, Peter
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3310 - 3317
  • [9] Extremal t-intersecting families for direct products
    Yao, Tian
    Lv, Benjian
    Wang, Kaishun
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [10] NONTRIVIAL t-INTERSECTING FAMILIES FOR VECTOR SPACES
    Cao, Mengyu
    Lv, Benjian
    Wang, Kaishun
    Zhou, Sanming
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 1823 - 1847