A Robust Keyframe-Based Visual SLAM for RGB-D Cameras in Challenging Scenarios

被引:4
作者
Lin, Xi [1 ,2 ]
Huang, Yewei [1 ]
Sun, Dingyi [2 ,3 ]
Lin, Tzu-Yuan [2 ]
Englot, Brendan [1 ]
Eustice, Ryan M. [2 ]
Ghaffari, Maani [2 ]
机构
[1] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07030 USA
[2] Univ Michigan, Dept Robot, Ann Arbor, MI 48109 USA
[3] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
关键词
Simultaneous localization and mapping; Feature extraction; Odometry; Optimization; Manganese; Cameras; Point cloud compression; Indoor environment; Visual SLAM; RGB-D camera; indoor environments; RECONSTRUCTION;
D O I
10.1109/ACCESS.2023.3312062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The accuracy of RGB-D SLAM systems is sensitive to the image quality, and can be significantly compromised in adverse situations such as when input images are blurry, lacking in texture features, or overexposed. In this paper, based on Continuous Direct Sparse Visual Odometry (CVO), we present a novel Keyframe-based CVO (KF-CVO) with intrinsic keyframe selection mechanism that effectively reduces the tracking error. We then extend KF-CVO to a RGB-D SLAM system, CVO SLAM, equipped with place recognition via ORB features, and joint bundle adjustment & pose graph optimization. Comprehensive evaluations on publicly available benchmarks show that the proposed RGB-D SLAM system achieves a higher success rate than current state-of-the-art-methods. The proposed system is more robust to difficult benchmark sequences than current state-of-the-art methods, where adverse situations such as rapid camera motions, environments lacking in texture, and overexposed images when strong illumination exists.
引用
收藏
页码:97239 / 97249
页数:11
相关论文
共 45 条
[1]  
[Anonymous], 2011, P AUSTR C ROB AUT
[2]  
[Anonymous], 2006, Pattern Recognition and Machine Learning, DOI [10.1117/1.2819119, DOI 10.18637/JSS.V017.B05]
[3]   ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM [J].
Campos, Carlos ;
Elvira, Richard ;
Gomez Rodriguez, Juan J. ;
Montiel, Jose M. M. ;
Tardos, Juan D. .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) :1874-1890
[4]   High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm [J].
Chen, Mingyou ;
Tang, Yunchao ;
Zou, Xiangjun ;
Huang, Kuangyu ;
Li, Lijuan ;
He, Yuxin .
OPTICS AND LASERS IN ENGINEERING, 2019, 122 :170-183
[5]  
Clark W., 2020, arXiv
[6]   MSC-VO: Exploiting Manhattan and Structural Constraints for Visual Odometry [J].
Company-Corcoles, Joan P. ;
Garcia-Fidalgo, Emilio ;
Ortiz, Alberto .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :2803-2810
[7]   BundleFusion: Real-Time Globally Consistent 3D Reconstruction Using On-the-Fly Surface Reintegration [J].
Dai, Angela ;
Niessner, Matthias ;
Zollhofer, Michael ;
Izadi, Shahram ;
Theobalt, Christian .
ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (03)
[8]  
Endres F, 2012, IEEE INT CONF ROBOT, P1691, DOI 10.1109/ICRA.2012.6225199
[9]   Direct Sparse Odometry [J].
Engel, Jakob ;
Koltun, Vladlen ;
Cremers, Daniel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (03) :611-625
[10]   LSD-SLAM: Large-Scale Direct Monocular SLAM [J].
Engel, Jakob ;
Schoeps, Thomas ;
Cremers, Daniel .
COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 :834-849