Assessment of Wafer-Level Transfer Techniques of Graphene with Respect to Semiconductor Industry Requirements

被引:9
作者
Wittmann, Sebastian [1 ,2 ]
Pindl, Stephan [2 ]
Sawallich, Simon [3 ]
Nagel, Michael [4 ]
Michalski, Alexander [4 ]
Pandey, Himadri [5 ]
Esteki, Ardeshir [2 ]
Kataria, Satender [2 ]
Lemme, Max C. [2 ,6 ]
机构
[1] Infineon Technol AG, Campeon 4, D-85579 Neubiberg, Germany
[2] Rhein Westfal TH Aachen, Otto-Blumenthal-Str 2, D-52074 Aachen, Germany
[3] Infineon Technol AG, Wernerwerkstrasse 2, D-93049 Regensburg, Germany
[4] Protemics GmbH, Otto-Blumenthal-Str 25, D-52074 Aachen, Germany
[5] Advantest Europe GmbH, Herrenburgerstr 130, D-71034 Boblingen, Germany
[6] AMO GmbH, Otto-Blumenthal-Str 25, D-52074 Aachen, Germany
关键词
contamination; graphene; integration; large area transfer; spectroscopy; CONTAMINATION; INTEGRATION;
D O I
10.1002/admt.202201587
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene is a promising candidate for future electronic applications. Manufacturing graphene-based electronic devices typically requires graphene transfer from its growth substrate to another desired substrate. This key step for device integration must be applicable at the wafer level and meet the stringent requirements of semiconductor fabrication lines. In this work, wet and semidry transfer (i.e. wafer bonding) are evaluated regarding wafer scalability, handling, potential for automation, yield, contamination, and electrical performance. A wafer scale tool was developed to transfer graphene from 150 mm copper foils to 200 mm silicon wafers without adhesive intermediate polymers. The transferred graphene coverage ranged from 97.9 % to 99.2 % for wet transfer and from 17.2 % to 90.8 % for semidry transfer, with average copper contaminations of 4.7 x 10(13) (wet) and 8.2 x 10(12) atoms/cm(2) (semidry). The corresponding electrical sheet resistance extracted from terahertz time-domain spectroscopy varied from 450 to 550 ohm sq(-1) for wet transfer and from 1000 to 1650 ohm sq(-1) for semidry transfer. Although the wet transfer is superior in terms of yield, carbon contamination level, and electrical quality, wafer bonding yields lower copper contamination levels and provides scalability due to existing industrial tools and processes. Our conclusions can be generalized to all 2D materials.
引用
收藏
页数:10
相关论文
共 35 条
  • [11] High throughput transfer technique: Save your graphene
    Kireev, D.
    Sarik, D.
    Wu, T.
    Xie, X.
    Wolfrum, B.
    Offenhaeusser, A.
    [J]. CARBON, 2016, 107 : 319 - 324
  • [12] 2D materials for future heterogeneous electronics
    Lemme, Max C.
    Akinwande, Deji
    Huyghebaert, Cedric
    Stampfer, Christoph
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [13] Nanoelectromechanical Sensors Based on Suspended 2D Materials
    Lemme, Max C.
    Wagner, Stefan
    Lee, Kangho
    Fan, Xuge
    Verbiest, Gerard J.
    Wittmann, Sebastian
    Lukas, Sebastian
    Dolleman, Robin J.
    Niklaus, Frank
    van der Zant, Herre S. J.
    Duesberg, Georg S.
    Steeneken, Peter G.
    [J]. RESEARCH, 2020, 2020
  • [14] Residual Metallic Contamination of Transferred Chemical Vapor Deposited Graphene
    Lupina, Grzegorz
    Kitzmann, Julia
    Costina, Ioan
    Lukosius, Mindaugas
    Wenger, Christian
    Wolff, Andre
    Vaziri, Sam
    Ostling, Mikael
    Pasternak, Iwona
    Krajewska, Aleksandra
    Strupinski, Wlodek
    Kataria, Satender
    Gahoi, Amit
    Lemme, Max C.
    Ruhl, Guenther
    Zoth, Guenther
    Luxenhofer, Oliver
    Mehr, Wolfgang
    [J]. ACS NANO, 2015, 9 (05) : 4776 - 4785
  • [15] Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene
    Mishra, Neeraj
    Forti, Stiven
    Fabbri, Filippo
    Martini, Leonardo
    McAleese, Clifford
    Conran, Ben R.
    Whelan, Patrick R.
    Shivayogimath, Abhay
    Jessen, Bjarke S.
    Buss, Lars
    Falta, Jens
    Aliaj, Ilirjan
    Roddaro, Stefano
    Flege, Jan I.
    Boggild, Peter
    Teo, Kenneth B. K.
    Coletti, Camilla
    [J]. SMALL, 2019, 15 (50)
  • [16] Nagel M, 2013, WOODH PUB SER ELECT, P374, DOI 10.1533/9780857096494.2.374
  • [17] Fabrication of Si/graphene/Si Double Heterostructures by Semiconductor Wafer Bonding towards Future Applications in Optoelectronics
    Naito, Takenori
    Tanabe, Katsuaki
    [J]. NANOMATERIALS, 2018, 8 (12):
  • [18] Integrating graphene into semiconductor fabrication lines
    Neumaier, Daniel
    Pindl, Stephan
    Lemme, Max C.
    [J]. NATURE MATERIALS, 2019, 18 (06) : 525 - 529
  • [19] The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2
    Pirkle, A.
    Chan, J.
    Venugopal, A.
    Hinojos, D.
    Magnuson, C. W.
    McDonnell, S.
    Colombo, L.
    Vogel, E. M.
    Ruoff, R. S.
    Wallace, R. M.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (12)
  • [20] Large-area integration of two-dimensional materials and their heterostructures by wafer bonding
    Quellmalz, Arne
    Wang, Xiaojing
    Sawallich, Simon
    Uzlu, Burkay
    Otto, Martin
    Wagner, Stefan
    Wang, Zhenxing
    Prechtl, Maximilian
    Hartwig, Oliver
    Luo, Siwei
    Duesberg, Georg S.
    Lemme, Max C.
    Gylfason, Kristinn B.
    Roxhed, Niclas
    Stemme, Goran
    Niklaus, Frank
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)