Assessment of Wafer-Level Transfer Techniques of Graphene with Respect to Semiconductor Industry Requirements

被引:9
作者
Wittmann, Sebastian [1 ,2 ]
Pindl, Stephan [2 ]
Sawallich, Simon [3 ]
Nagel, Michael [4 ]
Michalski, Alexander [4 ]
Pandey, Himadri [5 ]
Esteki, Ardeshir [2 ]
Kataria, Satender [2 ]
Lemme, Max C. [2 ,6 ]
机构
[1] Infineon Technol AG, Campeon 4, D-85579 Neubiberg, Germany
[2] Rhein Westfal TH Aachen, Otto-Blumenthal-Str 2, D-52074 Aachen, Germany
[3] Infineon Technol AG, Wernerwerkstrasse 2, D-93049 Regensburg, Germany
[4] Protemics GmbH, Otto-Blumenthal-Str 25, D-52074 Aachen, Germany
[5] Advantest Europe GmbH, Herrenburgerstr 130, D-71034 Boblingen, Germany
[6] AMO GmbH, Otto-Blumenthal-Str 25, D-52074 Aachen, Germany
关键词
contamination; graphene; integration; large area transfer; spectroscopy; CONTAMINATION; INTEGRATION;
D O I
10.1002/admt.202201587
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene is a promising candidate for future electronic applications. Manufacturing graphene-based electronic devices typically requires graphene transfer from its growth substrate to another desired substrate. This key step for device integration must be applicable at the wafer level and meet the stringent requirements of semiconductor fabrication lines. In this work, wet and semidry transfer (i.e. wafer bonding) are evaluated regarding wafer scalability, handling, potential for automation, yield, contamination, and electrical performance. A wafer scale tool was developed to transfer graphene from 150 mm copper foils to 200 mm silicon wafers without adhesive intermediate polymers. The transferred graphene coverage ranged from 97.9 % to 99.2 % for wet transfer and from 17.2 % to 90.8 % for semidry transfer, with average copper contaminations of 4.7 x 10(13) (wet) and 8.2 x 10(12) atoms/cm(2) (semidry). The corresponding electrical sheet resistance extracted from terahertz time-domain spectroscopy varied from 450 to 550 ohm sq(-1) for wet transfer and from 1000 to 1650 ohm sq(-1) for semidry transfer. Although the wet transfer is superior in terms of yield, carbon contamination level, and electrical quality, wafer bonding yields lower copper contamination levels and provides scalability due to existing industrial tools and processes. Our conclusions can be generalized to all 2D materials.
引用
收藏
页数:10
相关论文
共 35 条
  • [1] Mapping the electrical properties of large-area graphene
    Boggild, Peter
    Mackenzie, David M. A.
    Whelan, Patrick R.
    Petersen, Dirch H.
    Buron, Jonas Due
    Zurutuza, Amaia
    Gallop, John
    Hao, Ling
    Jepsen, Peter U.
    [J]. 2D MATERIALS, 2017, 4 (04):
  • [2] Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates
    Caldwell, Joshua D.
    Anderson, Travis J.
    Culbertson, James C.
    Jernigan, Glenn G.
    Hobart, Karl D.
    Kub, Fritz J.
    Tadjer, Marko J.
    Tedesco, Joseph L.
    Hite, Jennifer K.
    Mastro, Michael A.
    Myers-Ward, Rachael L.
    Eddy, Charles R., Jr.
    Campbell, Paul M.
    Gaskill, D. Kurt
    [J]. ACS NANO, 2010, 4 (02) : 1108 - 1114
  • [3] Ionic Screening of Charged-Impurity Scattering in Graphene
    Chen, Fang
    Xia, Jilin
    Tao, Nongjian
    [J]. NANO LETTERS, 2009, 9 (04) : 1621 - 1625
  • [4] How to report and benchmark emerging field-effect transistors
    Cheng, Zhihui
    Pang, Chin-Sheng
    Wang, Peiqi
    Le, Son T.
    Wu, Yanqing
    Shahrjerdi, Davood
    Radu, Iuliana
    Lemme, Max C.
    Peng, Lian-Mao
    Duan, Xiangfeng
    Chen, Zhihong
    Appenzeller, Joerg
    Koester, Steven J.
    Pop, Eric
    Franklin, Aaron D.
    Richter, Curt A.
    [J]. NATURE ELECTRONICS, 2022, 5 (07) : 416 - 423
  • [5] Wafer bonding solution to epitaxial graphene-silicon integration
    Dong, Rui
    Guo, Zelei
    Palmer, James
    Hu, Yike
    Ruan, Ming
    Hankinson, John
    Kunc, Jan
    Bhattacharya, Swapan K.
    Berger, Claire
    de Heer, Walt A.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (09)
  • [6] Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers
    Fan, Xuge
    Forsberg, Fredrik
    Smith, Anderson D.
    Schroder, Stephan
    Wagner, Stefan
    Rodjegard, Henrik
    Fischer, Andreas C.
    Ostling, Mikael
    Lemme, Max C.
    Niklaus, Frank
    [J]. NATURE ELECTRONICS, 2019, 2 (09) : 394 - 404
  • [7] Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
    Ferrari, Andrea C.
    Bonaccorso, Francesco
    Fal'ko, Vladimir
    Novoselov, Konstantin S.
    Roche, Stephan
    Boggild, Peter
    Borini, Stefano
    Koppens, Frank H. L.
    Palermo, Vincenzo
    Pugno, Nicola
    Garrido, Jose A.
    Sordan, Roman
    Bianco, Alberto
    Ballerini, Laura
    Prato, Maurizio
    Lidorikis, Elefterios
    Kivioja, Jani
    Marinelli, Claudio
    Ryhaenen, Tapani
    Morpurgo, Alberto
    Coleman, Jonathan N.
    Nicolosi, Valeria
    Colombo, Luigi
    Fert, Albert
    Garcia-Hernandez, Mar
    Bachtold, Adrian
    Schneider, Gregory F.
    Guinea, Francisco
    Dekker, Cees
    Barbone, Matteo
    Sun, Zhipei
    Galiotis, Costas
    Grigorenko, Alexander N.
    Konstantatos, Gerasimos
    Kis, Andras
    Katsnelson, Mikhail
    Vandersypen, Lieven
    Loiseau, Annick
    Morandi, Vittorio
    Neumaier, Daniel
    Treossi, Emanuele
    Pellegrini, Vittorio
    Polini, Marco
    Tredicucci, Alessandro
    Williams, Gareth M.
    Hong, Byung Hee
    Ahn, Jong-Hyun
    Kim, Jong Min
    Zirath, Herbert
    van Wees, Bart J.
    [J]. NANOSCALE, 2015, 7 (11) : 4598 - 4810
  • [8] Face-to-face transfer of wafer-scale graphene films
    Gao, Libo
    Ni, Guang-Xin
    Liu, Yanpeng
    Liu, Bo
    Castro Neto, Antonio H.
    Loh, Kian Ping
    [J]. NATURE, 2014, 505 (7482) : 190 - 194
  • [9] Hattori T., 1998, Ultraclean Surface Processing of Silicon Wafers: Secrets of VLSI Manufacturing
  • [10] Inac M, 2017, PROC EUR S-STATE DEV, P216, DOI 10.1109/ESSDERC.2017.8066630