Numerical computation of triangular complex spherical designs with small mesh ratio

被引:0
作者
Wang, Yu Guang [1 ,2 ,3 ,4 ,5 ]
Womersley, Robert S. [1 ,2 ]
Wu, Hau-Tieng [6 ,7 ,8 ]
Yu, Wei-Hsuan [2 ,9 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
[2] Brown Univ, ICERM, Providence, RI USA
[3] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
[5] Shanghai Jiao Tong Univ, LSC, MOE, Shanghai, Peoples R China
[6] Duke Univ, Dept Math, Durham, NC USA
[7] Duke Univ, Dept Stat Sci, Durham, NC USA
[8] Natl Ctr Theoret Sci, Math Div, Taipei, Taiwan
[9] Natl Cent Univ, Dept Math, Taoyuan, Taiwan
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Complex designs; Numerical integration; Uniform distribution; Quasi-uniform; Spherical designs; UNIFORM DESIGN; POINT SETS; INTEGRATION; SYSTEMS;
D O I
10.1016/j.cam.2022.114796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides triangular spherical designs for the complex unit sphere Std subset of Cd by exploiting the natural correspondence with the real unit sphere S2d-1 subset of R2d. A variational characterization of triangular complex designs is provided, with particular emphasis on numerical computation of efficient triangular complex designs with good geometric properties as measured by their mesh ratio. We give numerical examples of triangular spherical t-designs on complex unit spheres of dimension d = 2 to 6.(c) 2022 Published by Elsevier B.V.
引用
收藏
页数:15
相关论文
共 53 条
[1]   WELL CONDITIONED SPHERICAL DESIGNS FOR INTEGRATION AND INTERPOLATION ON THE TWO-SPHERE [J].
An, Congpei ;
Chen, Xiaojun ;
Sloan, Ian H. ;
Womersley, Robert S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (06) :2135-2157
[2]  
[Anonymous], 1974, Pure Appl. Math.
[3]   A survey on spherical designs and algebraic combinatorics on spheres [J].
Bannai, Eiichi ;
Bannai, Etsuko .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (06) :1392-1425
[4]   Distribution of points on a sphere with application to star catalogs [J].
Bauer, R .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2000, 23 (01) :130-137
[5]   Well-Separated Spherical Designs [J].
Bondarenko, Andriy ;
Radchenko, Danylo ;
Viazovska, Maryna .
CONSTRUCTIVE APPROXIMATION, 2015, 41 (01) :93-112
[6]   Optimal asymptotic bounds for spherical designs [J].
Bondarenko, Andriy ;
Radchenko, Danylo ;
Viazovska, Maryna .
ANNALS OF MATHEMATICS, 2013, 178 (02) :443-452
[7]  
Borodachov S.V., 2019, Discrete Energy on Rectifiable Sets, DOI DOI 10.1007/978-0-387-84808-2
[8]  
Brandolini L, 2014, ANN SCUOLA NORM-SCI, V13, P889
[9]   Random Point Sets on the Sphere-Hole Radii, Covering, and Separation [J].
Brauchart, J. S. ;
Reznikov, A. B. ;
Saff, E. B. ;
Sloan, I. H. ;
Wang, Y. G. ;
Womersley, R. S. .
EXPERIMENTAL MATHEMATICS, 2018, 27 (01) :62-81
[10]   Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces [J].
Brauchart, J. S. ;
Dick, J. ;
Saff, E. B. ;
Sloan, I. H. ;
Wang, Y. G. ;
Womersley, R. S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (02) :782-811