Asymmetric organic-inorganic bi-functional composite solid-state electrolyte for long stable cycling of high-voltage lithium battery

被引:50
作者
Liu, Weicui [1 ]
Li, Geng [2 ]
Yu, Wen [1 ]
Gao, Lu [1 ]
Shi, Dongjie [2 ]
Ju, Jingge [1 ]
Deng, Nanping [1 ]
Kang, Weimin [1 ]
机构
[1] Tiangong Univ, Natl Ctr Int Joint Res Separat Membranes, Sch Text Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[2] Haihe Lab Informat Technol Applicat Innovat, Natl Supercomp Ctr Tianjin, Tianjin 300457, Peoples R China
关键词
Asymmetric organic-inorganic bi-functional; structure; Composite solid-state electrolyte; High-voltage cathodes; Stable interfaces; Excellent long cycle; POLYMER ELECTROLYTE; IONIC-CONDUCTIVITY; FILLERS;
D O I
10.1016/j.ensm.2023.103005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poly(ethylene oxide) (PEO)-based solid-state electrolyte is difficult to achieve high voltage and energy density due to low ionic conductivity and narrow electrochemical stabilization window. Therefore, an urgent demand exists to construct a composite solid-state electrolyte that is resistant to both Li dendrite and high-voltage cathode oxidation. Here, we design and prepare an asymmetric bi-functional composite solid-state electrolyte achieving compatibility with Li anode and high-voltage anode to extend the cycle life of batteries. The F-con-taining hierarchically structured polyamide acids nanofibers towards the cathode side enhance interfacial compatibility with the cathode and provide excellent oxidation resistance. The rigid two-dimensional alumina nanosheets on the anode side further improve the interfacial stability with the Li anode and effectively inhibit the growth of Li dendrites. The synergistic effect of asymmetric organic-inorganic composite solid-state electrolyte is exploited to improve the cycling stability of different cathode (LiFePO4 (LFP) and LiNi0.8Mn0.1Co0.1O2 (NMC811))/Li batteries, greatly broaden the electrochemical stability window (5.3 V) and significantly enhance lithium dendrite inhibition. Based on density functional theory, the introduction of F-containing groups reduces the highest occupied molecular orbitals of the polyamide acids and that there is a strong binding between alumina and both the PEO terminal group and TFSI-. The result suggests that the composite solid-state elec-trolyte enhances the stability of PEO with the high-voltage cathode and Li anode, and inhibits the movement of anions. Therefore, it is noteworthy that the excellent electrochemical stability of this composite solid-state electrolyte with the NMC811/Li electrodes ensures long cycle of more than 800 cycles.
引用
收藏
页数:12
相关论文
共 57 条
[21]   A composite solid polymer electrolyte incorporating MnO2 nanosheets with reinforced mechanical properties and electrochemical stability for lithium metal batteries [J].
Li, Yuhan ;
Sun, Zongjie ;
Liu, Dongyu ;
Gao, Yiyang ;
Wang, Yuankun ;
Bu, Huaitian ;
Li, Mingtao ;
Zhang, Yanfeng ;
Gao, Guoxin ;
Ding, Shujiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) :2021-2032
[22]   Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery [J].
Lin, Chun-Er ;
Zhang, Hong ;
Song, You-Zhi ;
Zhang, Yin ;
Yuan, Jia-Jia ;
Zhu, Bao-Ku .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (03) :991-998
[23]   A High-Capacity, Long-Cycling All-Solid-State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte [J].
Lin, Yanke ;
Wu, Maochun ;
Sun, Jing ;
Zhang, Leicheng ;
Jian, Qinping ;
Zhao, Tianshou .
ADVANCED ENERGY MATERIALS, 2021, 11 (35)
[24]   Integrated Structure of Cathode and Double-Layer Electrolyte for Highly Stable and Dendrite-Free All-Solid-State Li-Metal Batteries [J].
Ling, Huajin ;
Shen, Lu ;
Huang, Yanfei ;
Ma, Jiabin ;
Chen, Likun ;
Hao, Xiaoge ;
Zhao, Liang ;
Kang, Feiyu ;
He, Yan-Bing .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (51) :56995-57002
[25]   Comprehensively -modified polymer electrolyte membranes with multifunctional PMIA for highly -stable all -solid-state lithium -ion batteries [J].
Liu, Lehao ;
Mo, Jinshan ;
Li, Jingru ;
Liu, Jinxin ;
Yan, Hejin ;
Lyu, Jing ;
Jiang, Bing ;
Chu, Lihua ;
Li, Meicheng .
JOURNAL OF ENERGY CHEMISTRY, 2020, 48 :334-343
[26]   Comprehensively-upgraded polymer electrolytes by multifunctional aramid nanofibers for stable all-solid-state Li-ion batteries [J].
Liu, Lehao ;
Lyu, Jing ;
Mo, Jinshan ;
Yan, Hejin ;
Xu, Lele ;
Peng, Peng ;
Li, Jingru ;
Jiang, Bing ;
Chu, Lihua ;
Li, Meicheng .
NANO ENERGY, 2020, 69
[27]   Stable Cycling of All-Solid-State Lithium Metal Batteries Enabled by Salt Engineering of PEO-Based Polymer Electrolytes [J].
Liu, Lujuan ;
Wang, Tong ;
Sun, Li ;
Song, Tinglu ;
Yan, Hao ;
Li, Chunli ;
Mu, Daobin ;
Zheng, Jincheng ;
Dai, Yang .
ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (02)
[28]   3D spiny AlF3/Mullite heterostructure nanofiber as solid-state polymer electrolyte fillers with enhanced ionic conductivity and improved interfacial compatibility [J].
Liu, Weicui ;
Meng, Lingshuai ;
Liu, Xueqiang ;
Gao, Lu ;
Wang, Xiaoxiao ;
Kang, Junbao ;
Ju, Jingge ;
Deng, Nanping ;
Cheng, Bowen ;
Kang, Weimin .
JOURNAL OF ENERGY CHEMISTRY, 2023, 76 :503-515
[29]   Ion-Selective Polyamide Acid Nanofiber Separators for High-Rate and Stable Lithium-Sulfur Batteries [J].
Luo, Xiang ;
Lu, Xianbo ;
Zhou, Gangyong ;
Zhao, Xingyu ;
Ouyang, Yue ;
Zhu, Xiaobo ;
Miao, Yue-E ;
Liu, Tianxi .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (49) :42198-42206
[30]   Designing Weakly Solvating Solid Main-Chain Fluoropolymer Electrolytes: Synergistically Enhancing Stability toward Li Anodes and High-Voltage Cathodes [J].
Ma, Mingyu ;
Shao, Fei ;
Wen, Peng ;
Chen, Kaixuan ;
Li, Jiarui ;
Zhou, Yang ;
Liu, Yinli ;
Jia, Minyi ;
Chen, Mao ;
Lin, Xinrong .
ACS ENERGY LETTERS, 2021, 6 (12) :4255-4264