A positive feedback loop between ZEB2 and ACSL4 regulates lipid metabolism to promote breast cancer metastasis

被引:23
作者
Lin, Jiamin [1 ]
Zhang, Pingping [1 ]
Liu, Wei [2 ]
Liu, Guorong [1 ]
Zhang, Juan [1 ]
Yan, Min [3 ]
Duan, Yuyou [4 ,5 ]
Yang, Na [1 ]
机构
[1] South China Univ Technol, Affiliated Hosp 2, Sch Med, Dept Lab Med, Guangzhou, Peoples R China
[2] Jinan Univ, Guangzhou Red Cross Hosp, Dept Breast Surg, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, State Key Lab Oncol South China, Canc Ctr, Guangzhou, Peoples R China
[4] South China Univ Technol, Inst Life Sci, Lab Stem Cells & Translat Med, Guangzhou, Peoples R China
[5] South China Univ Technol, Sch Med, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
human; mouse; viruses; E; coli; Human; TO-MESENCHYMAL TRANSITION; AURORA KINASE; DROPLET; ACTIVATION; GROWTH;
D O I
10.7554/eLife.87510
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lipid metabolism plays a critical role in cancer metastasis. However, the mechanisms through which metastatic genes regulate lipid metabolism remain unclear. Here, we describe a new oncogenic-metabolic feedback loop between the epithelial-mesenchymal transition transcription factor ZEB2 and the key lipid enzyme ACSL4 (long-chain acyl-CoA synthetase 4), resulting in enhanced cellular lipid storage and fatty acid oxidation (FAO) to drive breast cancer metastasis. Functionally, depletion of ZEB2 or ACSL4 significantly reduced lipid droplets (LDs) abundance and cell migration. ACSL4 overexpression rescued the invasive capabilities of the ZEB2 knockdown cells, suggesting that ACSL4 is crucial for ZEB2-mediated metastasis. Mechanistically, ZEB2-activated ACSL4 expression by directly binding to the ACSL4 promoter. ACSL4 binds to and stabilizes ZEB2 by reducing ZEB2 ubiquitination. Notably, ACSL4 not only promotes the intracellular lipogenesis and LDs accumulation but also enhances FAO and adenosine triphosphate production by upregulating the FAO rate-limiting enzyme CPT1A (carnitine palmitoyltransferase 1 isoform A). Finally, we demonstrated that ACSL4 knockdown significantly reduced metastatic lung nodes in vivo. In conclusion, we reveal a novel positive regulatory loop between ZEB2 and ACSL4, which promotes LDs storage to meet the energy needs of breast cancer metastasis, and identify the ZEB2-ACSL4 signaling axis as an attractive therapeutic target for overcoming breast cancer metastasis.
引用
收藏
页数:25
相关论文
共 53 条
[1]   Lipid Droplets in Cancer: From Composition and Role to Imaging and Therapeutics [J].
Antunes, Patricia ;
Cruz, Adriana ;
Barbosa, Jose ;
Bonifacio, Vasco D. B. ;
Pinto, Sandra N. .
MOLECULES, 2022, 27 (03)
[2]   Breast cancer: Biology, biomarkers, and treatments [J].
Barzaman, Khadijeh ;
Karami, Jafar ;
Zarei, Zeinab ;
Hosseinzadeh, Aysooda ;
Kazemi, Mohammad Hossein ;
Moradi-Kalbolandi, Shima ;
Safari, Elahe ;
Farahmand, Leila .
INTERNATIONAL IMMUNOPHARMACOLOGY, 2020, 84
[3]   Cancer Focus Lipid metabolism and cancer [J].
Bian, Xueli ;
Liu, Rui ;
Meng, Ying ;
Xing, Dongming ;
Xu, Daqian ;
Lu, Zhimin .
JOURNAL OF EXPERIMENTAL MEDICINE, 2021, 218 (01)
[4]   Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer [J].
Camarda, Roman ;
Zhou, Alicia Y. ;
Kohnz, Rebecca A. ;
Balakrishnan, Sanjeev ;
Mahieu, Celine ;
Anderton, Brittany ;
Eyob, Henok ;
Kajimura, Shingo ;
Tward, Aaron ;
Krings, Gregor ;
Nomura, Daniel K. ;
Goga, Andrei .
NATURE MEDICINE, 2016, 22 (04) :427-+
[5]   ACSL4 promotes hepatocellular carcinoma progression via c-Myc stability mediated by ERK/FBW7/c-Myc axis [J].
Chen, Junru ;
Ding, Chaofeng ;
Chen, Yunhao ;
Hu, Wendi ;
Lu, Yuejie ;
Wu, Wenxuan ;
Zhang, Yanpeng ;
Yang, Beng ;
Wu, Hao ;
Peng, Chuanhui ;
Xie, Haiyang ;
Zhou, Lin ;
Wu, Jian ;
Zheng, Shusen .
ONCOGENESIS, 2020, 9 (04)
[6]   Lipid metabolism reprogramming and its potential targets in cancer [J].
Cheng, Chunming ;
Geng, Feng ;
Cheng, Xiang ;
Guo, Deliang .
CANCER COMMUNICATIONS, 2018, 38
[7]   ACSL4 suppresses glioma cells proliferation via activating ferroptosis [J].
Cheng, Jing ;
Fan, Yan-Qin ;
Liu, Bao-Hui ;
Zhou, Han ;
Wang, Jun-Min ;
Chen, Qian-Xue .
ONCOLOGY REPORTS, 2020, 43 (01) :147-158
[8]   TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells [J].
Corbet, Cyril ;
Bastien, Estelle ;
de Jesus, Joao Pedro Santiago ;
Dierge, Emeline ;
Martherus, Ruben ;
Vander Linden, Catherine ;
Doix, Bastien ;
Degavre, Charline ;
Guilbaud, Celine ;
Petit, Laurenne ;
Michiels, Carine ;
Dessy, Chantal ;
Larondelle, Yvan ;
Feron, Olivier .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   Lipid droplets: platforms with multiple functions in cancer hallmarks [J].
Cruz, Andre L. S. ;
Barreto, Ester de A. ;
Fazolini, Narayana P. B. ;
Viola, Joao P. B. ;
Bozza, Patricia T. .
CELL DEATH & DISEASE, 2020, 11 (02)
[10]   Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression [J].
Daniel Orlando, Ulises ;
Fernanda Castillo, Ana ;
Rios Medrano, Mayra Agustina ;
Rosaria Solano, Angela ;
Mariana Maloberti, Paula ;
Jorge Podesta, Ernesto .
BIOCHEMICAL PHARMACOLOGY, 2019, 159 :52-63