Gliadin nanoparticles for oral administration of bioactives: Ex vivo and in vivo investigations

被引:3
|
作者
Voci, Silvia [1 ]
Pangua, Cristina [2 ]
Martinez-Oharriz, Maria Cristina [3 ]
Aranaz, Paula [4 ]
Collantes, Maria [5 ]
Irache, Juan M. [2 ]
Cosco, Donato [1 ]
机构
[1] Magna Graecia Univ Catanzaro, Dept Hlth Sci, Campus Univ S Venuta, I-88100 Catanzaro, Italy
[2] Univ Navarra, Dept Chem & Pharmaceut Technol, C Irunlarrea 1, Pamplona 31008, Spain
[3] Univ Navarra, Dept Chem, C Irunlarrea 1, Pamplona 31008, Spain
[4] Univ Navarra, Ctr Nutr Res, Sch Pharm & Nutr, Pamplona 31008, Spain
[5] Clin Univ Navarra, Dept Nucl Med, Translat Mol Imaging Unit UNIMTRA, Pamplona, Spain
关键词
Biodistribution; Gliadin; Mucoadhesion; Nanoparticles; Oral administration; MUCUS-PERMEATING NANOPARTICLES; ZEIN NANOPARTICLES; CAENORHABDITIS-ELEGANS; DRUG-DELIVERY; DESIGN; MODEL; OPTIMIZATION; ANTIOXIDANT; FABRICATION; PROOXIDANT;
D O I
10.1016/j.ijbiomac.2023.126111
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study aims to provide a thorough characterization of Brij O2-stabilized gliadin nanoparticles to be used for the potential oral administration of various compounds. Different techniques were used in order to evaluate their physico-chemical features and then in vivo studies in rats were performed for the investigation of their biodistribution and gastrointestinal transit profiles. The results showed that the gliadin nanoparticles accumulated in the mucus layer of the bowel mucosa and evidenced their ability to move along the digestive systems of the animals. The incubation of the nanosystems with Caenorhabditis elegans, used as an additional in vivo model, confirmed the intake of the particles and evidenced their presence along the entire gastrointestinal tract of these nematodes. The gliadin nanoparticles influenced neither the egg-laying activity of the worms nor their metabolism of lipids up to 10 & mu;g/mL of nanoformulation. The systems decreased the content of the age-related lipofuscin pigment in the nematodes in a dose-dependent manner, demonstrating a certain antioxidant activity. Lastly, dihydroethidium staining showed the absence of oxidative stress upon incubation of the worms together with the formulations, confirming their safe profile. This data paves the way for the future application of the proposed nanosystems regarding the oral delivery of various bioactives.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Ex vivo approaches to predicting oral pharmacokinetics in humans
    Stewart, BH
    Wang, Y
    Surendran, N
    ANNUAL REPORTS IN MEDICINAL CHEMISTRY, VOL 35, 2000, 35 : 299 - 307
  • [42] Ex vivo assessment of the buccal and oral bone by CBCT
    Ruetters, M.
    Kim, T-S
    Hagenfeld, D.
    Kronsteiner, D.
    Gehrig, H.
    Lux, C-J
    Sen, S.
    JOURNAL OF OROFACIAL ORTHOPEDICS-FORTSCHRITTE DER KIEFERORTHOPADIE, 2023, 84 (01): : 41 - 48
  • [43] Ex vivo and in vivo investigations of picroliv from Picrorhiza kurroa in an alcohol intoxication model in rats
    Saraswat, B
    Visen, PKS
    Patnaik, GK
    Dhawan, BN
    JOURNAL OF ETHNOPHARMACOLOGY, 1999, 66 (03) : 263 - 269
  • [44] Manganese ferrite-based nanoparticles induce ex vivo, but not in vivo, cardiovascular effects
    Nunes, Allancer D. C.
    Ramalho, Laylla S.
    Souza, Alvaro P. S.
    Mendes, Elizabeth P.
    Colugnati, Diego B.
    Zufelato, Nicholas
    Sousa, Marcelo H.
    Bakuzis, Andris F.
    Castro, Carlos H.
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2014, 9 : 3299 - 3312
  • [45] Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies
    Kesavan Bhaskar
    Jayaraman Anbu
    Velayutham Ravichandiran
    Vobalaboina Venkateswarlu
    Yamsani Madhusudan Rao
    Lipids in Health and Disease, 8
  • [46] Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies
    Froehlich, Eleonore
    Salar-Behzadi, Sharareh
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (03) : 4795 - 4822
  • [47] Ex Vivo and In Vivo Evaluation of Dodecaborate-Based Clusters Encapsulated in Ferumoxytol Nanoparticles
    Bernier, Nicholas A.
    Teh, James
    Reichel, Derek
    Zahorsky-Reeves, Joanne L.
    Perez, J. Manuel
    Spokoyny, Alexander M.
    LANGMUIR, 2021, 37 (49) : 14500 - 14508
  • [48] LGene Correction of Beta-Thalassemia Ex Vivo and In Vivo Mediated by PNA Nanoparticles
    Piotrowski-Daspit, Alexandra S.
    Kauffman, Amy C.
    Lin, Chun-Yu
    Liu, Yanfeng
    Glazer, Peter M.
    Saltzman, W. Mark
    MOLECULAR THERAPY, 2019, 27 (04) : 451 - 452
  • [49] Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies
    Bhaskar, Kesavan
    Anbu, Jayaraman
    Ravichandiran, Velayutham
    Venkateswarlu, Vobalaboina
    Rao, Yamsani Madhusudan
    LIPIDS IN HEALTH AND DISEASE, 2009, 8
  • [50] Ex vivo distribution of gold nanoparticles in choroidal melanoma
    Kanavi, Mozhgan Rezaei
    Asadi, Somayeh
    Ahmadieh, Hamid
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2017, 12 : 8527 - 8529