Machine learning and disease prediction in obstetrics

被引:11
作者
Arain, Zara [1 ]
Iliodromiti, Stamatina [2 ]
Slabaugh, Gregory [3 ]
David, Anna L. [4 ]
Chowdhury, Tina T. [1 ]
机构
[1] Queen Mary Univ London, Ctr Bioengn, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[2] Queen Mary Univ London, Wolfson Inst Populat Hlth, Womens Hlth Res Unit, 58 Turner St, London E1 2AB, England
[3] Queen Mary Univ London, Digital Environm Res Inst, Sch Elect Engn & Comp Sci, London E1 1HH, England
[4] UCL, Elizabeth Garrett Anderson Inst Womens Hlth, Med Sch Bldg,Huntley St, London WC1E 6AU, England
来源
CURRENT RESEARCH IN PHYSIOLOGY | 2023年 / 6卷
基金
英国工程与自然科学研究理事会;
关键词
Obstetrics; Gestational diabetes; Pre-eclampsia; Preterm birth; Machine learning; Echocardiography; Cardiotocography; Magnetic resonance imaging; Ultrasound; ARTIFICIAL-INTELLIGENCE; FRAMEWORK; RECORDS;
D O I
10.1016/j.crphys.2023.100099
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Machine learning technologies and translation of artificial intelligence tools to enhance the patient experience are changing obstetric and maternity care. An increasing number of predictive tools have been developed with data sourced from electronic health records, diagnostic imaging and digital devices. In this review, we explore the latest tools of machine learning, the algorithms to establish prediction models and the challenges to assess fetal well-being, predict and diagnose obstetric diseases such as gestational diabetes, pre-eclampsia, preterm birth and fetal growth restriction. We discuss the rapid growth of machine learning approaches and intelligent tools for automated diagnostic imaging of fetal anomalies and to asses fetoplacental and cervix function using ultrasound and magnetic resonance imaging. In prenatal diagnosis, we discuss intelligent tools for magnetic resonance imaging sequencing of the fetus, placenta and cervix to reduce the risk of preterm birth. Finally, the use of machine learning to improve safety standards in intrapartum care and early detection of complications will be discussed. The demand for technologies to enhance diagnosis and treatment in obstetrics and maternity should improve frameworks for patient safety and enhance clinical practice.
引用
收藏
页数:9
相关论文
共 67 条
[21]   A Generic Quality Control Framework for Fetal Ultrasound Cardiac Four-Chamber Planes [J].
Dong, Jinbao ;
Liu, Shengfeng ;
Liao, Yimei ;
Wen, Huaxuan ;
Lei, Baiying ;
Li, Shengli ;
Wang, Tianfu .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (04) :931-942
[22]   An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI [J].
Ebner, Michael ;
Wang, Guotai ;
Li, Wenqi ;
Aertsen, Michael ;
Patel, Premal A. ;
Aughwane, Rosalind ;
Melbourne, Andrew ;
Doel, Tom ;
Dymarkowski, Steven ;
De Coppi, Paolo ;
David, Anna L. ;
Deprest, Jan ;
Ourselin, Sebastien ;
Vercauteren, Tom .
NEUROIMAGE, 2020, 206
[23]   Intelligent classification of antenatal cardiotocography signals via multimodal bidirectional gated recurrent units [J].
Fei, Yue ;
Chen, Fan ;
He, Lifang ;
Chen, Jiamin ;
Hao, Yuexing ;
Li, Xia ;
Liu, Guiqing ;
Chen, Qinqun ;
Li, Li ;
Wei, Hang .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
[24]  
Fung R, 2020, LANCET DIGIT HEALTH, V2, pE368, DOI 10.1016/S2589-7500(20)30131-X
[25]   Novel artificial intelligence approach for automatic differentiation of fetal occiput anterior and non-occiput anterior positions during labor [J].
Ghi, T. ;
Conversano, F. ;
Zegarra, R. Ramirez ;
Pisani, P. ;
Dall'Asta, A. ;
Lanzone, A. ;
Lau, W. ;
Vimercati, A. ;
Iliescu, D. G. ;
Mappa, I ;
Rizzo, G. ;
Casciaro, S. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2022, 59 (01) :93-99
[26]   A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants [J].
He, Lili ;
Li, Hailong ;
Wang, Jinghua ;
Chen, Ming ;
Gozdas, Elveda ;
Dillman, Jonathan R. ;
Parikh, Nehal A. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[27]   Maternal perception of foetal movement compared with movement detected by real-time ultrasound: An exploratory study [J].
Hijazi, Zina R. ;
Callan, Susan E. ;
East, Christine E. .
AUSTRALIAN & NEW ZEALAND JOURNAL OF OBSTETRICS & GYNAECOLOGY, 2010, 50 (02) :144-147
[28]   Use of machine learning algorithms for prediction of fetal risk using cardiotocographic data [J].
Hoodbhoy, Zahra ;
Noman, Mohammad ;
Shafique, Ayesha ;
Nasim, Ali ;
Chowdhury, Devyani ;
Hasan, Babar .
INTERNATIONAL JOURNAL OF APPLIED AND BASIC MEDICAL RESEARCH, 2019, 9 (04) :226-230
[29]   Automated detection of uterine contractions in tocography signals - Comparison of algorithms [J].
Horoba, Krzysztof ;
Wrobel, Janusz ;
Jezewski, Janusz ;
Kupka, Tomasz ;
Roj, Dawid ;
Jezewski, Michal .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2016, 36 (04) :610-618
[30]   HMM-based Supervised Machine Learning Framework for the Detection of fECG R-R Peak Locations [J].
Huque, A. S. A. ;
Ahmed, K. I. ;
Mukit, M. A. ;
Mostafa, R. .
IRBM, 2019, 40 (03) :157-166