Machine learning and disease prediction in obstetrics

被引:11
作者
Arain, Zara [1 ]
Iliodromiti, Stamatina [2 ]
Slabaugh, Gregory [3 ]
David, Anna L. [4 ]
Chowdhury, Tina T. [1 ]
机构
[1] Queen Mary Univ London, Ctr Bioengn, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[2] Queen Mary Univ London, Wolfson Inst Populat Hlth, Womens Hlth Res Unit, 58 Turner St, London E1 2AB, England
[3] Queen Mary Univ London, Digital Environm Res Inst, Sch Elect Engn & Comp Sci, London E1 1HH, England
[4] UCL, Elizabeth Garrett Anderson Inst Womens Hlth, Med Sch Bldg,Huntley St, London WC1E 6AU, England
来源
CURRENT RESEARCH IN PHYSIOLOGY | 2023年 / 6卷
基金
英国工程与自然科学研究理事会;
关键词
Obstetrics; Gestational diabetes; Pre-eclampsia; Preterm birth; Machine learning; Echocardiography; Cardiotocography; Magnetic resonance imaging; Ultrasound; ARTIFICIAL-INTELLIGENCE; FRAMEWORK; RECORDS;
D O I
10.1016/j.crphys.2023.100099
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Machine learning technologies and translation of artificial intelligence tools to enhance the patient experience are changing obstetric and maternity care. An increasing number of predictive tools have been developed with data sourced from electronic health records, diagnostic imaging and digital devices. In this review, we explore the latest tools of machine learning, the algorithms to establish prediction models and the challenges to assess fetal well-being, predict and diagnose obstetric diseases such as gestational diabetes, pre-eclampsia, preterm birth and fetal growth restriction. We discuss the rapid growth of machine learning approaches and intelligent tools for automated diagnostic imaging of fetal anomalies and to asses fetoplacental and cervix function using ultrasound and magnetic resonance imaging. In prenatal diagnosis, we discuss intelligent tools for magnetic resonance imaging sequencing of the fetus, placenta and cervix to reduce the risk of preterm birth. Finally, the use of machine learning to improve safety standards in intrapartum care and early detection of complications will be discussed. The demand for technologies to enhance diagnosis and treatment in obstetrics and maternity should improve frameworks for patient safety and enhance clinical practice.
引用
收藏
页数:9
相关论文
共 67 条
[1]   A comprehensive survey on signal processing and machine learning techniques for non-invasive fetal ECG extraction [J].
Abel, Jaba Deva Krupa ;
Dhanalakshmi, Samiappan ;
Kumar, R. .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (01) :1373-1400
[2]   Artificial intelligence in obstetrics [J].
Ahn, Ki Hoon ;
Lee, Kwang-Sig .
OBSTETRICS & GYNECOLOGY SCIENCE, 2022, 65 (02) :113-124
[3]   Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour [J].
Alfirevic, Zarko ;
Devane, Declan ;
Gyte, Gillian M. L. ;
Cuthbert, Anna .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2017, (02)
[4]  
[Anonymous], 2018, Obstet Gynecol, V131, pe49, DOI 10.1097/AOG.0000000000002501
[5]   Maternal thyroid profile in first and second trimester of pregnancy is correlated with gestational diabetes mellitus through machine learning [J].
Araya, Juan ;
Rodriguez, Andres ;
Lagos-SanMartin, Karin ;
Mennickent, Daniela ;
Gutierrez-Vega, Sebastian ;
Ortega-Contreras, Bernel ;
Valderrama-Gutierrez, Barbara ;
Gonzalez, Marcelo ;
Farias-Jofre, Marcelo ;
Guzman-Gutierrez, Enrique .
PLACENTA, 2021, 103 :82-85
[6]   An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease [J].
Arnaout, Rima ;
Curran, Lara ;
Zhao, Yili ;
Levine, Jami C. ;
Chinn, Erin ;
Moon-Grady, Anita J. .
NATURE MEDICINE, 2021, 27 (05) :882-+
[7]   Comparison of early warning scores for predicting clinical deterioration and infection in obstetric patients [J].
Arnolds, David E. ;
Carey, Kyle A. ;
Braginsky, Lena ;
Holt, Roxane ;
Edelson, Dana P. ;
Scavone, Barbara M. ;
Churpek, Matthew .
BMC PREGNANCY AND CHILDBIRTH, 2022, 22 (01)
[8]   Prediction of gestational diabetes based on nationwide electronic health records [J].
Artzi, Nitzan Shalom ;
Shilo, Smadar ;
Hadar, Eran ;
Rossman, Hagai ;
Barbash-Hazan, Shiri ;
Ben-Haroush, Avi ;
Balicer, Ran D. ;
Feldman, Becca ;
Wiznitzer, Arnon ;
Segal, Eran .
NATURE MEDICINE, 2020, 26 (01) :71-+
[9]   Applications of artificial intelligence and machine learning in heart failure [J].
Averbuch, Tauben ;
Sullivan, Kristen ;
Sauer, Andrew ;
Mamas, Mamas A. ;
Voors, Adriaan A. ;
Gale, Chris P. ;
Metra, Marco ;
Ravindra, Neal ;
Van Spall, Harriette G. C. .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (02) :311-322
[10]   Artificial intelligence and amniotic fluid multiomics: prediction of perinatal outcome in asymptomatic women with short cervix [J].
Bahado-Singh, R. O. ;
Sonek, J. ;
McKenna, D. ;
Cool, D. ;
Aydas, B. ;
Turkoglu, O. ;
Bjorndahl, T. ;
Mandel, R. ;
Wishart, D. ;
Friedman, P. ;
Graham, S. F. ;
Yilmaz, A. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2019, 54 (01) :110-118