Co-doping strategy enhanced the ionic conductivity and excellent lithium stability of garnet-type Li7La3Zr2O12 electrolyte in all solid-state lithium batteries

被引:32
作者
Xu, Ziqiang [1 ,2 ]
Hu, Xin [1 ]
Fu, Bowen [1 ]
Khan, Kashif [1 ]
Wu, Jintian [1 ,3 ]
Li, Teng [1 ]
Zhou, Haiping [1 ]
Fang, Zixuan [1 ]
Wu, Mengqiang [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst HuZhou, Huzhou 313001, Zhejiang, Peoples R China
[3] Sichuan Univ Sci & Engn, Sch Chem Engn, Zigong 643000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Solid-state electrolytes; Garnet-type; Co-doping; Bottleneck size; Ionic conductivity; Lithium stability; CERAMIC ELECTROLYTES; DOPED LI7LA3ZR2O12; PHASE; MORPHOLOGY; GROWTH;
D O I
10.1016/j.jmat.2023.01.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Garnet-type Li7La3Zr2O12 (LLZO) is one of the most promising solid-state electrolytes (SSEs). However, the application of LLZO is limited by structural instability, low ionic conductivity, and poor lithium stability. To obtain a garnet-type solid electrolyte with a stable structure and high ionic conductivity, a series of TaeCe co-doping cubic Li6 center dot 4La3Zr1.4-xTa0.6CexO12 (LLZTCO, x = 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.30) electrolytes were successfully synthesized through conventional solid-phase method. The Ta5+ doping can introduce more lithium vacancies and effectively maintain the stability of the cubic phase. The Ce4+ with a larger ionic radius is introduced into the lattice to widen the Lithorn migration bottleneck size, which significantly increased the ionic conductivity to 1.05 x 10(-3) S/cm. It also shows excellent stability to lithium metal by the optimization of Lithorn transport channel. Li||LLZTCO||Li symmetric cells can cycle stably for more than 6 000 h at a current density of 0.1 mA/cm(2) without any surface modifications. The commercialization potential of LLZTCO samples in all solid-state lithium batteries (ASSLBs) is confirmed by the prepared LiFePO4||LLZTCO||Li cells with a capacity retention rate of 98% after 100 cycles at 0.5C. This new co-doping method presents a practical solution for the realization of high-performance ASSLBs. (c) 2023 The Authors. Published by Elsevier B.V. on behalf of The Chinese Ceramic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:651 / 660
页数:10
相关论文
共 54 条
[1]   Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure [J].
Awaka, Junji ;
Kijima, Norihito ;
Hayakawa, Hiroshi ;
Akimoto, Junji .
JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (08) :2046-2052
[2]   Origin of the Structural Phase Transition in Li7La3Zr2O12 [J].
Bernstein, N. ;
Johannes, M. D. ;
Khang Hoang .
PHYSICAL REVIEW LETTERS, 2012, 109 (20)
[3]   Nanocrystalline iron oxide based electroactive materials in lithium ion batteries: the critical role of crystallite size, morphology, and electrode heterostructure on battery relevant electrochemistry [J].
Bruck, Andrea M. ;
Cama, Christina A. ;
Gannett, Cara N. ;
Marschilok, Amy C. ;
Takeuchi, Esther S. ;
Takeuchi, Kenneth J. .
INORGANIC CHEMISTRY FRONTIERS, 2016, 3 (01) :26-40
[4]   A Sandwich Structure Composite Solid Electrolyte with Enhanced Interface Stability and Electrochemical Properties For Solid-state Lithium Batteries [J].
Chen, Fei ;
Luo, Jamans ;
Jing, Mao-xiang ;
Li, Jie ;
Huang, Zhen-hao ;
Yang, Hua ;
Shen, Xiang-qian .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (07)
[5]   Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces [J].
Chen, Rusong ;
Li, Qinghao ;
Yu, Xiqian ;
Chen, Liquan ;
Li, Hong .
CHEMICAL REVIEWS, 2020, 120 (14) :6820-6877
[6]   Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte [J].
Cheng, Eric Jianfeng ;
Sharafi, Asma ;
Sakamoto, Jeff .
ELECTROCHIMICA ACTA, 2017, 223 :85-91
[7]   The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes [J].
Cheng, Lei ;
Crumlin, Ethan J. ;
Chen, Wei ;
Qiao, Ruimin ;
Hou, Huaming ;
Lux, Simon Franz ;
Zorba, Vassilia ;
Russo, Richard ;
Kostecki, Robert ;
Liu, Zhi ;
Persson, Kristin ;
Yang, Wanli ;
Cabana, Jordi ;
Richardson, Thomas ;
Chen, Guoying ;
Doeff, Marca .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18294-18300
[8]   Combined Experimental and Computational Study of Ce-Doped La3Zr2Li7O12 Garnet Solid-State Electrolyte [J].
Dong, Bo ;
Yeandel, Stephen R. ;
Goddard, Pooja ;
Slater, Peter R. .
CHEMISTRY OF MATERIALS, 2020, 32 (01) :215-223
[9]   Building a Better Li-Garnet Solid Electrolyte/Metallic Li Interface with Antimony [J].
Dubey, Romain ;
Sastre, Jordi ;
Cancellieri, Claudia ;
Okur, Faruk ;
Forster, Alexander ;
Pompizii, Lea ;
Priebe, Agnieszka ;
Romanyuk, Yaroslav E. ;
Jeurgens, Lars P. H. ;
Kovalenko, Maksym, V ;
Kravchyk, Kostiantyn, V .
ADVANCED ENERGY MATERIALS, 2021, 11 (39)
[10]   Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Hitz, Gregory T. ;
McOwen, Dennis W. ;
Li, Yiju ;
Xu, Shaomao ;
Wen, Yang ;
Zhang, Lei ;
Wang, Chengwei ;
Pastel, Glenn ;
Dai, Jiaqi ;
Liu, Boyang ;
Xie, Hua ;
Yao, Yonggang ;
Wachsman, Eric D. ;
Hu, Liangbing .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (07) :1568-1575