Coefficient Estimates for a General Subclass of m-fold Symmetric Bi-univalent Functions by Using Faber Polynomials

被引:0
作者
Salehian, Safa [1 ]
Motamednezhad, Ahmad [2 ]
Magesh, Nanjundan [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Gorgan Branch, Gorgan, Iran
[2] Shahrood Univ Technol, Fac Math Sci, POB 316 36155, Shahrood, Iran
[3] Govt Arts Coll Men, Postgrad & Res Dept Math, Krishnagiri 635001, Tamilnadu, India
来源
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS | 2023年 / 18卷 / 01期
关键词
Bi-univalent functions; m-fold symmetric bi-univalent functions; Coefficient estimates; Faber polynomials; BOUNDS;
D O I
10.52547/ijmsi.18.1.97
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce a new subclass H sigma m (A, 0) of the m-fold symmetric bi-univalent functions. Also, we find the es-timates of the Taylor-Maclaurin initial coefficients |am+1|, |a2m+1| and general coefficients |amk+1|(k >= 2) for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 31 条
[1]   Differential calculus on the Faber polynomials [J].
Airault, H ;
Bouali, A .
BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03) :179-222
[2]   An algebra of differential operators and generating functions on the set of univalent functions [J].
Airault, H ;
Ren, JG .
BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (05) :343-367
[3]  
Altinkaya S., 2015, J MATH-UK, V2015, P241683, DOI [10.1155/2015/241683, DOI 10.1155/2015/241683]
[4]  
Altinkaya S, 2018, COMMUN FAC SCI UNIV, V67, P29, DOI [10.1501/commua1_0000000827, 10.1501/Commual_0000000827]
[5]  
2015, Acta Universitatis Apulensis, V41, DOI [10.17114/j.aua.2015.41.12, 10.17114/j.aua.2015.41.12, DOI 10.17114/J.AUA.2015.41.12]
[6]  
[Anonymous], 2016, Palest. J. Math.
[7]  
Brannan D. A., 1979, ASPECT CONT COMPLEX
[8]  
Brannan D. A., 1988, Studia Univ. Babes-Bolyai Math., V31, P53, DOI DOI 10.1016/B978-0-08-031636-9.50012-7
[9]   An extension of the univalent condition for a family of integral operators [J].
Breaz, Daniel ;
Breaz, Nicoleta ;
Srivastava, H. M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (01) :41-44
[10]   Second Hankel determinant for certain subclasses of bi-univalent functions [J].
Caglar, Murat ;
Deniz, Erhan ;
Srivastava, Hari Mohan .
TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (03) :694-706