AI Evaluation of Stenosis on Coronary CTA, Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve A CREDENCE Trial Substudy

被引:68
作者
Griffin, William F. [1 ,2 ]
Choi, Andrew D. [1 ,2 ]
Riess, Joanna S. [1 ,2 ]
Marques, Hugo [3 ]
Chang, Hyuk-Jae [4 ,5 ]
Choi, Jung Hyun [6 ]
Doh, Joon-Hyung [7 ]
Her, Ae-Young [8 ]
Koo, Bon-Kwon [9 ]
Nam, Chang-Wook [10 ]
Park, Hyung-Bok [11 ]
Shin, Sang-Hoon [12 ]
Cole, Jason [13 ]
Gimelli, Alessia [14 ]
Khan, Muhammad Akram [15 ]
Lu, Bin [16 ]
Gao, Yang [17 ]
Nabi, Faisal [18 ]
Nakazato, Ryo [17 ]
Schoepf, U. Joseph [19 ]
Driessen, Roel S. [20 ]
Bom, Michiel J. [20 ]
Thompson, Randall [21 ]
Jang, James J. [22 ]
Ridner, Michael [23 ]
Rowan, Chris [24 ]
Avelar, Erick [25 ]
Genereux, Philippe [26 ]
Knaapen, Paul [20 ]
de Waard, Guus A. [20 ]
Pontone, Gianluca [27 ]
Andreini, Daniele [27 ]
Earls, James P. [1 ,2 ]
机构
[1] George Washington Univ, Sch Med, Dept Radiol, Washington, DC 20037 USA
[2] George Washington Univ, Sch Med, Div Cardiol, Washington, DC 20037 USA
[3] Nova Med Sch, Fac Ciencias Med, Dept Cardiol, Lisbon, Portugal
[4] Yonsei Univ Hlth Syst, Yonsei Univ, Coll Med, Div Cardiol,Severance Cardiovasc Hosp, Seoul, South Korea
[5] Yonsei Univ Hlth Syst, Yonsei Univ, Coll Med, Severance Biomed Sci Inst, Seoul, South Korea
[6] Pusan Natl Univ Hosp, Dept Cardiol, Busan, South Korea
[7] Inje Univ, Div Cardiol, Ilsan Paik Hosp, Gimhae, South Korea
[8] Kang Won Natl Univ Hosp, Dept Cardiol, Chunchon, South Korea
[9] Seoul Natl Univ Hosp, Dept Internal Med, Seoul, South Korea
[10] Keimyung Univ, Cardiovasc Ctr, Dongsan Hosp, Daegu, South Korea
[11] Catholic Kwandong Univ, Dept Internal Med, Div Cardiol, Int St Marys Hosp,Coll Med, Incheon, South Korea
[12] Ewha Womans Univ, Dept Internal Med, Div Cardiol, Seoul Hosp, Seoul, South Korea
[13] Mobile Cardiol Associates, Dept Cardiol, Mobile, AL USA
[14] Fdn Toscana Gabriele Monasterio, Dept Imaging, Pisa, Italy
[15] Cardiac Ctr Texas, Dept Cardiol, Mckinney, TX USA
[16] Fuwai Hosp, State Key Lab Cardiovasc Dis, Beijing, Peoples R China
[17] St Lukes Int Hosp, Cardiovasc Ctr, Tokyo, Japan
[18] Houston Methodist Hosp, Dept Cardiol, Houston, TX USA
[19] Med Univ South Carolina, Dept Radiol, Charleston, SC USA
[20] Univ Amsterdam, VU Univ Med Ctr, Dept Cardiol, Med Ctr, Amsterdam, Netherlands
[21] St Lukes Mid Amer Heart Inst, Dept Cardiol, Kansas City, MO USA
[22] Kaiser Permanente Hosp, Dept Cardiol, Oakland, CA USA
[23] Heart Ctr Res LLC, Huntsville, AL USA
[24] Renown Heart & Vasc Inst, Dept Cardiol, Reno, NV USA
[25] St Marys Hosp, Oconee Heart & Vasc Ctr, Athens, GA USA
[26] Gagnon Cardiovasc Inst, Morristown Med Ctr, Morristown, NJ USA
[27] Ctr Cardiol Monzino IRCCS, Dept Cardiol, Milan, Italy
关键词
artificial intelligence; atherosclerosis; coronary artery disease; coronary CTA; coronary computed; tomography; fractional flow reserve; quantitative coronary angiography; DIAGNOSTIC PERFORMANCE; ARTERY STENOSIS; ACCURACY;
D O I
10.1016/j.jcmg.2021.10.020
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Clinical reads of coronary computed tomography angiography (CTA), especially by less experienced readers, may result in overestimation of coronary artery disease stenosis severity compared with expert interpretation. Artificial intelligence (AI)-based solutions applied to coronary CTA may overcome these limitations. OBJECTIVES This study compared the performance for detection and grading of coronary stenoses using artificial intelligence-enabled quantitative coronary computed tomography (AI-QCT) angiography analyses to core lab-interpreted coronary CTA, core lab quantitative coronary angiography (QCA), and invasive fractional flow reserve (FFR). METHODS Coronary CTA, FFR, and QCA data from 303 stable patients (64 +/- 10 years of age, 71% male) from the CREDENCE (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia) trial were retrospectively analyzed using an Food and Drug Administration-cleared cloud-based software that performs AI-enabled coronary segmentation, lumen and vessel wall determination, plaque quantification and characterization, and stenosis determination. RESULTS Disease prevalence was high, with 32.0%, 35.0%, 21.0%, and 13.0% demonstrating >= 50% stenosis in 0, 1, 2, and 3 coronary vessel territories, respectively. Average AI-QCT analysis time was 10.3 +/- 2.7 minutes. AI-QCT evaluation demonstrated per-patient sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 94%, 68%, 81%, 90%, and 84%, respectively, for >= 50% stenosis, and of 94%, 82%, 69%, 97%, and 86%, respectively, for detection of >= 70% stenosis. There was high correlation between stenosis detected on AI-QCT evaluation vs QCA on a per-vessel and per-patient basis (intraclass correlation coefficient =0.73 and 0.73, respectively; P < 0.001 for both). False positive AI-QCT findings were noted in in 62 of 848 (7.3%) vessels (stenosis of >= 70% by AI-QCT and QCA of < 70%); however, 41 (66.1%) of these had an FFR of < 0.8. CONCLUSIONS A novel AI-based evaluation of coronary CTA enables rapid and accurate identification and exclusion of high-grade stenosis and with close agreement to blinded, core lab-interpreted quantitative coronary angiography. (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia [CREDENCE]; NCT02173275) (J Am Coll Cardiol Img 2023;16:193-205) (c) 2023 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:193 / 205
页数:13
相关论文
共 31 条
  • [1] Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging
    Al'Aref, Subhi J.
    Anchouche, Khalil
    Singh, Gurpreet
    Slomka, Piotr J.
    Kolli, Kranthi K.
    Kumar, Amit
    Pandey, Mohit
    Maliakal, Gabriel
    van Rosendael, Alexander R.
    Beecy, Ashley N.
    Berman, Daniel S.
    Leipsic, Jonathan
    Nieman, Koen
    Andreini, Daniele
    Pontone, Gianluca
    Schoepf, U. Joseph
    Shaw, Leslee J.
    Chang, Hyuk-Jae
    Narula, Jagat
    Bax, Jeroen J.
    Guan, Yuanfang
    Min, James K.
    [J]. EUROPEAN HEART JOURNAL, 2019, 40 (24) : 1975 - +
  • [2] Borren N, 2015, INTERV CARDIOL, V7, P1
  • [3] Diagnostic Performance of 64-Multidetector Row Coronary Computed Tomographic Angiography for Evaluation of Coronary Artery Stenosis in Individuals Without Known Coronary Artery Disease
    Budoff, Matthew J.
    Dowe, David
    Jollis, James G.
    Gitter, Michael
    Sutherland, John
    Halamert, Edward
    Scherer, Markus
    Bellinger, Raye
    Martin, Arthur
    Benton, Robert
    Delago, Augustin
    Min, James K.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 52 (21) : 1724 - 1732
  • [4] Burgstahler Christof, 2007, J Cardiovasc Comput Tomogr, V1, P143, DOI 10.1016/j.jcct.2007.09.003
  • [5] Selective Referral Using CCTA Versus Direct Referral for Individuals Referred to Invasive Coronary Angiography for Suspected CAD A Randomized, Controlled, Open-Label Trial
    Chang, Hyuk-Jae
    Lin, Fay Y.
    Gebow, Dan
    An, Hae Young
    Andreini, Daniele
    Bathina, Ravi
    Baggiano, Andrea
    Beltrama, Virginia
    Cerci, Rodrigo
    Choi, Eui-Young
    Choi, Jung-Hyun
    Choi, So-Yeon
    Chung, Namsik
    Cole, Jason
    Doh, Joon-Hyung
    Ha, Sang-Jin
    Her, Ae-Young
    Kepka, Cezary
    Kim, Jang-Young
    Kim, Jin-Won
    Kim, Sang-Wook
    Kim, Woong
    Pontone, Gianluca
    Valeti, Uma
    Villines, Todd C.
    Lu, Yao
    Kumar, Amit
    Cho, Iksung
    Danad, Ibrahim
    Han, Donghee
    Heo, Ran
    Lee, Sang-Eun
    Lee, Ji Hyun
    Park, Hyung-Bok
    Sung, Ji-min
    Leflang, David
    Zullo, Joseph
    Shaw, Leslee J.
    Min, James K.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2019, 12 (07) : 1303 - 1312
  • [6] Choi A, 2020, SOC CARDIOVASCULAR C
  • [7] CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): A Multi-center, international study
    Choi, Andrew D.
    Marques, Hugo
    Kumar, Vishak
    Griffin, William F.
    Rahban, Habib
    Karlsberg, Ronald P.
    Zeman, Robert K.
    Katz, Richard J.
    Earls, James P.
    [J]. JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2021, 15 (06) : 470 - 476
  • [8] Cardiovascular Imaging Through the Prism of Modern Metrics
    Choi, Andrew D.
    Geske, Jeffrey B.
    Lopez-Mattei, Juan C.
    Parwani, Purvi
    Wang, Dee Dee
    Winchester, David E.
    Sengupta, Partho P.
    Zoghbi, William A.
    Shaw, Leslee J.
    Chandrashekhar, Y. S.
    Blankstein, Ron
    [J]. JACC-CARDIOVASCULAR IMAGING, 2020, 13 (05) : 1256 - 1269
  • [9] Fernandes Marlos R, 2007, J Invasive Cardiol, V19, P412
  • [10] Unsupervised abnormality detection through mixed structure regularization (MSR) in deep sparse autoencoders
    Freiman, Moti
    Manjeshwar, Ravindra
    Goshen, Liran
    [J]. MEDICAL PHYSICS, 2019, 46 (05) : 2223 - 2231