Quantification of airway wall contrast enhancement on virtual monoenergetic images from spectral computed tomography

被引:3
作者
Bodenberger, Arndt Lukas [1 ,2 ]
Konietzke, Philip [1 ,2 ,3 ]
Weinheimer, Oliver [1 ,2 ,3 ]
Wagner, Willi Linus [1 ,2 ,3 ]
Stiller, Wolfram [1 ,2 ,3 ]
Weber, Tim Frederik [1 ,3 ]
Heussel, Claus Peter [1 ,2 ,3 ]
Kauczor, Hans-Ulrich [1 ,2 ,3 ]
Wielpuetz, Mark Oliver [1 ,2 ,3 ]
机构
[1] Heidelberg Univ Hosp, Dept Diagnost & Intervent Radiol, Neuenheimer Feld 420, D-69120 Heidelberg, Germany
[2] Translat Lung Res Ctr Heidelberg TLRC, German Ctr Lung Res DZL, Neuenheimer Feld 156, D-69120 Heidelberg, Germany
[3] Thoraxklin Univ Heidelberg, Dept Diagnost & Intervent Radiol Nucl Med, Rontgenstrasse 1, D-69126 Heidelberg, Germany
关键词
Multidetector computed tomography; Lung; Contrast material; Computer-assisted image processing; CT; EMPHYSEMA; THICKNESS; COPD; PROGRESSION; BIOMARKER; DISEASE; SMOKERS;
D O I
10.1007/s00330-023-09514-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesQuantitative computed tomography (CT) plays an increasingly important role in phenotyping airway diseases. Lung parenchyma and airway inflammation could be quantified by contrast enhancement at CT, but its investigation by multiphasic examinations is limited. We aimed to quantify lung parenchyma and airway wall attenuation in a single contrast-enhanced spectral detector CT acquisition.MethodsFor this cross-sectional retrospective study, 234 lung-healthy patients who underwent spectral CT in four different contrast phases (non-enhanced, pulmonary arterial, systemic arterial, and venous phase) were recruited. Virtual monoenergetic images were reconstructed from 40-160 keV, on which attenuations of segmented lung parenchyma and airway walls combined for 5th-10th subsegmental generations were assessed in Hounsfield Units (HU) by an in-house software. The spectral attenuation curve slope between 40 and 100 keV (lambda HU) was calculated.ResultsMean lung density was higher at 40 keV compared to that at 100 keV in all groups (p < 0.001). lambda HU of lung attenuation was significantly higher in the systemic (1.7 HU/keV) and pulmonary arterial phase (1.3 HU/keV) compared to that in the venous phase (0.5 HU/keV) and non-enhanced (0.2 HU/keV) spectral CT (p < 0.001). Wall thickness and wall attenuation were higher at 40 keV compared to those at 100 keV for the pulmonary and systemic arterial phase (p <= 0.001). lambda HU for wall attenuation was significantly higher in the pulmonary arterial (1.8 HU/keV) and systemic arterial (2.0 HU/keV) compared to that in the venous (0.7 HU/keV) and non-enhanced (0.3 HU/keV) phase (p <= 0.002).ConclusionsSpectral CT may quantify lung parenchyma and airway wall enhancement with a single contrast phase acquisition, and may separate arterial and venous enhancement. Further studies are warranted to analyze spectral CT for inflammatory airway diseases.
引用
收藏
页码:5557 / 5567
页数:11
相关论文
共 38 条
[1]   QIBA guidance: Computed tomography imaging for COVID-19 quantitative imaging applications [J].
Avila, Ricardo S. ;
Fain, Sean B. ;
Hatt, Chuck ;
Armato, Samuel G., III ;
Mulshine, James L. ;
Gierada, David ;
Silva, Mario ;
Lynch, David A. ;
Hoffman, Eric A. ;
Ranallo, Frank N. ;
Mayo, John R. ;
Yankelevitz, David ;
Estepar, Raul San Jose ;
Subramaniam, Raja ;
Henschke, Claudia, I ;
Guimaraes, Alex ;
Sullivan, Daniel C. .
CLINICAL IMAGING, 2021, 77 :151-157
[2]   Measuring pulmonary function in COPD using quantitative chest computed tomography analysis [J].
Bakker, Jens T. ;
Klooster, Karin ;
Vliegenthart, Rozemarijn ;
Slebos, Dirk-Jan .
EUROPEAN RESPIRATORY REVIEW, 2021, 30 (161)
[3]   Correlation of iodine uptake and perfusion parameters between dual-energy CT imaging and first-pass dual-input perfusion CT in lung cancer [J].
Chen, Xiaoliang ;
Xu, Yanyan ;
Duan, Jianghui ;
Li, Chuandong ;
Sun, Hongliang ;
Wang, Wu .
MEDICINE, 2017, 96 (28)
[4]   Standardizing CT lung density measure across scanner manufacturers [J].
Chen-Mayer, Huaiyu Heather ;
Fuld, Matthew K. ;
Hoppel, Bernice ;
Chen-Mayer, Huaiyu Heather ;
Judy, Philip F. ;
Sieren, Jered P. ;
Guo, Junfeng ;
Lynch, David A. ;
Possolo, Antonio ;
Fain, Sean B. .
MEDICAL PHYSICS, 2017, 44 (03) :974-985
[5]   The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study [J].
Coxson, Harvey O. ;
Dirksen, Asger ;
Edwards, Lisa D. ;
Yates, Julie C. ;
Agusti, Alvar ;
Bakke, Per ;
Calverley, Peter M. A. ;
Celli, Bartolome ;
Crim, Courtney ;
Duvoix, Annelyse ;
Fauerbach, Paola Nasute ;
Lomas, David A. ;
MacNee, William ;
Mayer, Ruth J. ;
Miller, Bruce E. ;
Mueller, Nestor L. ;
Rennard, Stephen I. ;
Silverman, Edwin K. ;
Tal-Singer, Ruth ;
Wouters, Emiel F. M. ;
Vestbo, Jorgen .
LANCET RESPIRATORY MEDICINE, 2013, 1 (02) :129-136
[6]   Bronchial wall thickness measurement in computed tomography: Effect of intravenous contrast agent and reconstruction kernel [J].
Dettmer, S. ;
Entrup, J. ;
Schmidt, M. ;
de Wall, C. ;
Wacker, F. ;
Shin, H. .
EUROPEAN JOURNAL OF RADIOLOGY, 2012, 81 (11) :3606-3613
[7]   Dual-Energy Computed Tomography Compared to Lung Perfusion Scintigraphy to Assess Pulmonary Perfusion in Patients Screened for Endoscopic Lung Volume Reduction [J].
Gietema, Hester A. ;
Walraven, Kim H. M. ;
Posthuma, Rein ;
Mitea, Cristina ;
Slebos, Dirk-Jan ;
Vanfleteren, Lowie E. G. W. .
RESPIRATION, 2021, 100 (12) :1186-1195
[8]   Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study [J].
Gomez-Cardona, Daniel ;
Nagle, Scott K. ;
Li, Ke ;
Robinson, Terry E. ;
Chen, Guang-Hong .
MEDICAL PHYSICS, 2015, 42 (10) :5919-5927
[9]   Dual-Energy CT: New Horizon in Medical Imaging [J].
Goo, Hyun Woo ;
Goo, Jin Mo .
KOREAN JOURNAL OF RADIOLOGY, 2017, 18 (04) :555-569
[10]   Quantitative computed tomography imaging of airway remodeling in severe asthma [J].
Grenier, Philippe A. ;
Fetita, Catalin I. ;
Brillet, Pierre-Yves .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2016, 6 (01) :76-83