Effects of interfacial molecular mobility on thermal boundary conductance at solid-liquid interface

被引:4
作者
Anandakrishnan, Abhijith [1 ]
Ramos-Alvarado, Bladimir [2 ]
Kannam, Sridhar Kumar [3 ]
Sathian, Sarith P. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Appl Mech, Chennai, India
[2] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[3] Swinburne Univ Technol, Sch Sci Comp & Engn Technol, Dept Math, Melbourne, Vic 3122, Australia
关键词
NANOSCALE HEAT-TRANSFER; INITIAL CONFIGURATIONS; KAPITZA RESISTANCE; TRANSPORT; DYNAMICS; DISSIPATION; MECHANISM; ORDER;
D O I
10.1063/5.0131536
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effects of interfacial molecular mobility on the thermal boundary conductance (TBC) across graphene-water and graphene-perfluorohexane interfaces were investigated using non-equilibrium molecular dynamics simulations. The molecular mobility was varied by equilibrating nanoconfined water and perfluorohexane at different temperatures. The long-chain molecules of perfluorohexane exhibited a prominent layered structure, indicating a low molecular mobility, over a wide temperature range between 200 and 450 K. Alternatively, water increased its mobility at high temperatures, resulting in an enhanced molecular diffusion that significantly contributed to the interfacial thermal transport, in addition to the increasing vibrational carrier population at high temperatures. Furthermore, the TBC across the graphene-water interface exhibited a quadratic relationship with the rise in temperature, whereas for the graphene-perfluorohexane interface, a linear relationship was observed. The high rate of diffusion in interfacial water facilitated additional low-frequency modes, and a spectral decomposition of the TBC also indicated an enhancement in the same frequency range. Thus, the enhanced spectral transmission and higher molecular mobility of water with respect to perfluorohexane explained the difference in the thermal transport across the interfaces considered herein.
引用
收藏
页数:10
相关论文
共 56 条
[1]   Scale effects in the nanoscale heat transfer of molecular interfaces with different lattice orientations [J].
Al Hossain, Jaber ;
Kim, BoHung .
AIP ADVANCES, 2021, 11 (12)
[2]   Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects [J].
Alexeev, Dmitry ;
Chen, Jie ;
Walther, Jens H. ;
Giapis, Konstantinos P. ;
Angelikopoulos, Panagiotis ;
Koumoutsakos, Petros .
NANO LETTERS, 2015, 15 (09) :5744-5749
[3]   Effects of Electrostatic Interactions on Kapitza Resistance in Hexagonal Boron Nitride-Water Interfaces [J].
Alosious, Sobin ;
Kannam, Sridhar Kumar ;
Sathian, Sarith P. ;
Todd, B. D. .
LANGMUIR, 2022, 38 (29) :8783-8793
[4]   Kapitza resistance at water-graphene interfaces [J].
Alosious, Sobin ;
Kannam, Sridhar Kumar ;
Sathian, Sarith P. ;
Todd, B. D. .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (22) :224703
[5]   Unsteady nanoscale thermal transport across a solid-fluid interface [J].
Balasubramanian, Ganesh ;
Banerjee, Soumik ;
Puri, Ishwar K. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (06)
[6]   Temperature dependence of thermal resistance at the water/silicon interface [J].
Barisik, Murat ;
Beskok, Ali .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 77 :47-54
[7]   Kapitza resistance at the liquid-solid interface [J].
Barrat, JL ;
Chiaruttini, F .
MOLECULAR PHYSICS, 2003, 101 (11) :1605-1610
[8]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[9]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[10]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818