Self-Supervised Graph Attention Collaborative Filtering for Recommendation

被引:3
|
作者
Zhu, Jiangqiang [1 ]
Li, Kai [1 ,2 ]
Peng, Jinjia [1 ,2 ]
Qi, Jing [1 ,2 ]
机构
[1] Hebei Univ, Sch Cyber Secur & Comp, Baoding 071000, Peoples R China
[2] Hebei Univ, Hebei Machine Vis Engn Res Ctr, Baoding 071000, Peoples R China
关键词
recommendation system; collaborative filtering; graph neural networks; self-supervised learning; multi-task learning; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.3390/electronics12040793
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the complementary nature of graph neural networks and structured data in recommendations, recommendation systems using graph neural network techniques have become mainstream. However, there are still problems, such as sparse supervised signals and interaction noise, in the recommendation task. Therefore, this paper proposes a self-supervised graph attention collaborative filtering for recommendation (SGACF). The correlation between adjacent nodes is deeply mined using a multi-head graph attention network to obtain accurate node representations. It is worth noting that self-supervised learning is brought in as an auxiliary task in the recommendation, where the supervision task is the main task. It assists model training for supervised tasks. A multi-view of a node is generated by the graph data-augmentation method. We maximize the consistency between its different views compared to the views of the same node and minimize the consistency between its different views compared to the views of other nodes. In this paper, the effectiveness of the method is illustrated by abundant experiments on three public datasets. The results show its significant improvement in the accuracy of the long-tail item recommendation and the robustness of the model.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Self-Supervised Signed Graph Attention Network for Social Recommendation
    Zhao, Qin
    Liu, Gang
    Yang, Fuli
    Yang, Ru
    Kou, Zuliang
    Wang, Dong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [2] Self-supervised Multimodal Graph Convolutional Network for collaborative filtering
    Kim, Sungjune
    Yun, Seongjun
    Lee, Jongwuk
    Chang, Gyusam
    Roh, Wonseok
    Sohn, Dae-Neung
    Lee, Jung-Tae
    Park, Hogun
    Kim, Sangpil
    INFORMATION SCIENCES, 2024, 653
  • [3] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735
  • [4] Knowledge Graph Self-Supervised Rationalization for Recommendation
    Yang, Yuhao
    Huang, Chao
    Xia, Lianghao
    Huang, Chunzhen
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3046 - 3056
  • [5] Self-supervised dual graph learning for recommendation
    Li, Anchen
    Yang, Bo
    Huo, Huan
    Hussain, Farookh Khadeer
    Xu, Guandong
    KNOWLEDGE-BASED SYSTEMS, 2025, 310
  • [6] Self-supervised graph transformer networks for social recommendation
    Li, Qinyao
    Yang, Qimeng
    Tian, Shengwei
    Yu, Long
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [7] Graph Diffusive Self-Supervised Learning for Social Recommendation
    Li, Jiuqiang
    Wang, Hongjun
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 2442 - 2446
  • [8] Popularity-Debiased Graph Self-Supervised for Recommendation
    Li, Shanshan
    Hu, Xinzhuan
    Guo, Jingfeng
    Liu, Bin
    Qi, Mingyue
    Jia, Yutong
    ELECTRONICS, 2024, 13 (04)
  • [9] Self-supervised graph learning for occasional group recommendation
    Hao, Bowen
    Yin, Hongzhi
    Li, Cuiping
    Chen, Hong
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10880 - 10902
  • [10] Self-supervised contrastive learning for implicit collaborative filtering
    Song, Shipeng
    Liu, Bin
    Teng, Fei
    Li, Tianrui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139