Imidazolium-based AEMs with high dimensional and alkaline-resistance stabilities for extended temperature range of alkaline fuel cells

被引:21
作者
Li, Xiaofeng [1 ,2 ]
Wang, Zimo [1 ]
Chen, Yaohan [1 ,2 ]
Li, Yonggang [1 ]
Guo, Jing [1 ]
Zheng, Jifu [1 ]
Li, Shenghai [1 ,2 ]
Zhang, Suobo [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, Key Lab Polymer Ecomat, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Imidazolium cation; Anion exchange membrane; Water swelling; High alkaline stability; Fuel cell performance; ANION-EXCHANGE MEMBRANES; CONDUCTIVITY; CATIONS; LONENES; ROMP;
D O I
10.1016/j.memsci.2023.121352
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Anion exchange membranes prepared from imidazolium cations still need to overcome the drawbacks of water solubility and chemical stability in strong base. Here, we use density functional theory (DFT) to focus on alkaline stability of imidazolium-based monomers with different C4/C5-position substituents and analyze their degra- dation mechanism when treated with 10 M NaOH. On the basis, we select methyl-substituted imidazolium (MeIM) cationic compound to construct ether-free main-chain type polymers via superacid-catalytic reaction, together with the introduction of branched monomer to inhibit water swelling of membrane. The optimized branched structure maintains stable dimension performance under 80 degrees C compared to linear polymer dissolved in water. Meanwhile, the alkaline-resisted membrane with branched structure expands the operating tempera- ture range of fuel cell to 90 degrees C and maintains long-term durability.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Anion Exchange Membranes' Evolution toward High Hydroxide Ion Conductivity and Alkaline Resiliency [J].
Arges, Christopher G. ;
Zhang, Le .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (07) :2991-3012
[2]   Anion exchange polyelectrolytes for membranes and ionomers [J].
Chen, Nanjun ;
Lee, Young Moo .
PROGRESS IN POLYMER SCIENCE, 2021, 113
[3]   A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies [J].
Cheng, Jie ;
He, Gaohong ;
Zhang, Fengxiang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (23) :7348-7360
[4]   Polymeric materials as anion-exchange membranes for alkaline fuel cells [J].
Couture, Guillaume ;
Alaaeddine, Ali ;
Boschet, Frederic ;
Ameduri, Bruno .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (11) :1521-1557
[5]   Graphene oxide-polybenzimidazolium nanocomposite anion exchange membranes for electrodialysis [J].
Cseri, Levente ;
Baugh, Joseph ;
Alabi, Adetunji ;
AlHajaj, Ahmed ;
Zou, Linda ;
Dryfe, Robert A. W. ;
Budd, Peter M. ;
Szekely, Gyorgy .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (48) :24728-24739
[6]   Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes [J].
Dang, Hai-Son ;
Weiber, Eva Annika ;
Jannasch, Patric .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (10) :5280-5284
[7]   Review of cell performance in anion exchange membrane fuel cells [J].
Dekel, Dario R. .
JOURNAL OF POWER SOURCES, 2018, 375 :158-169
[8]   Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability [J].
Fan, Jiantao ;
Willdorf-Cohen, Sapir ;
Schibli, Eric M. ;
Paula, Zoe ;
Li, Wei ;
Skalski, Thomas J. G. ;
Sergeenko, Ania Tersakian ;
Hohenadel, Amelia ;
Frisken, Barbara J. ;
Magliocca, Emanuele ;
Mustain, William E. ;
Diesendruck, Charles E. ;
Dekel, Dario R. ;
Holdcroft, Steven .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Alkaline fuel cell technology-A review [J].
Ferriday, T. B. ;
Middleton, Peter Hugh .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (35) :18489-18510
[10]   Highly Stable N3-Substituted Imidazolium-Based Alkaline Anion Exchange Membranes: Experimental Studies and Theoretical Calculations [J].
Gu, Fenglou ;
Dong, Huilong ;
Li, Youyong ;
Si, Zhihong ;
Yan, Feng .
MACROMOLECULES, 2014, 47 (01) :208-216