Certain results of Κ-almost gradient Ricci-Bourguignon soliton on pseudo-Riemannian manifolds

被引:7
作者
Dey, Santu [1 ]
机构
[1] Bidhan Chandra Coll, Dept Math, Asansol 4, Rishra, West Bengal, India
关键词
-Ricci-Bourguignon soliton; -almost gradient Ricci-Bourguignon soliton; Paracontact geometry; Para-Kenmotsu manifolds; Para-Sasakian manifolds; Para-cosymplectic manifolds; 2ND-ORDER PARALLEL TENSORS; ETA-RICCI; PARACONTACT; EINSTEIN; SURFACES; GEOMETRY; CONTACT; CURVES;
D O I
10.1016/j.geomphys.2022.104725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The prime object in this article is to study Kappa-almost Ricci-Bourguignon soliton and Kappa- almost gradient Ricci-Bourguignon soliton within the framework of paracontact metric manifolds. Here, we realize some conditions under which a paracontact metric manifold admitting a Kappa-Ricci-Bourguignon almost soliton is Einstein (trivial) and q-Einstein. We also show that if a three dimensional para-Kenmotsu manifold M3 admitting a Kappa-almost gradient Ricci-Bourguignon soliton with a constant scalar curvature, then the soliton becomes an almost gradient Ricci-Bourguignon soliton whose soliton function is -S2. We also characterize and find some notable results Kappa-almost gradient Ricci-Bourguignon soliton on para-Sasakian manifolds and para-cosymplectic manifolds.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 70 条
[1]  
Adati T., 1977, TRU MATH, V13, P33
[2]  
[Anonymous], 1970, J. Differential Geom.
[3]  
Bejan CL, 2014, ANN GLOB ANAL GEOM, V46, P117, DOI 10.1007/s10455-014-9414-4
[4]   Almost η-Ricci and Almost η-Yamabe Solitons with Torse-Forming Potential Vector Field [J].
Blaga, Adara M. ;
Ozgur, Cihan .
QUAESTIONES MATHEMATICAE, 2022, 45 (01) :143-163
[5]  
Bourguignon J.P., 1981, Lect. Notes Math., V838, P42
[6]   HOMOGENEOUS PARACONTACT METRIC THREE-MANIFOLDS [J].
Calvaruso, G. .
ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) :697-718
[7]  
Calvaruso G., 2013, J GEOM PHYS, V73, P20
[8]   Geometry of H-paracontact metric manifolds [J].
Calvaruso, Giovanni ;
Perrone, Domenico .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (3-4) :325-346
[9]   Ricci solitons in three-dimensional paracontact geometry [J].
Calvaruso, Giovanni ;
Perrone, Antonella .
JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 :1-12
[10]   Sasaki-Einstein and paraSasaki-Einstein metrics from (κ, μ)-structures [J].
Cappelletti-Montano, Beniamino ;
Carriazo, Alfonso ;
Martin-Molina, Veronica .
JOURNAL OF GEOMETRY AND PHYSICS, 2013, 73 :20-36