Multi-trait analysis of gene-by-environment interactions in large-scale genetic studies

被引:1
|
作者
Luo, Lan [1 ]
Mehrotra, Devan, V [2 ]
Shen, Judong [1 ]
Tang, Zheng-Zheng [3 ]
机构
[1] Merck & Co Inc, Biostat & Res Decis Sci, Rahway, NJ 07065 USA
[2] Merck & Co Inc, Biostat & Res Decis Sci, North Wales, PA 19454 USA
[3] Univ Wisconsin, Dept Biostat & Med Informat, 330 N Orchard St, Madison, WI 53715 USA
关键词
Genetic association studies; Genotype-by-environment interaction; Multi-trait analysis; Omnibus test; Random-effects meta-analysis; Summary statistics; COMPLEX TRAITS; RARE; ASSOCIATION; SET; VARIANTS;
D O I
10.1093/biostatistics/kxad004
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying genotype-by-environment interaction (GEI) is challenging because the GEI analysis generally has low power. Large-scale consortium-based studies are ultimately needed to achieve adequate power for identifying GEI. We introduce Multi-Trait Analysis of Gene-Environment Interactions (MTAGEI), a powerful, robust, and computationally efficient framework to test gene-environment interactions on multiple traits in large data sets, such as the UK Biobank (UKB). To facilitate the meta-analysis of GEI studies in a consortium, MTAGEI efficiently generates summary statistics of genetic associations for multiple traits under different environmental conditions and integrates the summary statistics for GEI analysis. MTAGEI enhances the power of GEI analysis by aggregating GEI signals across multiple traits and variants that would otherwise be difficult to detect individually. MTAGEI achieves robustness by combining complementary tests under a wide spectrum of genetic architectures. We demonstrate the advantages of MTAGEI over existing single-trait-based GEI tests through extensive simulation studies and the analysis of the whole exome sequencing data from the UKB.
引用
收藏
页码:504 / 520
页数:17
相关论文
共 50 条
  • [1] A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies
    Li, Xihao
    Chen, Han
    Selvaraj, Margaret Sunitha
    Van Buren, Eric
    Zhou, Hufeng
    Wang, Yuxuan
    Sun, Ryan
    McCaw, Zachary R.
    Yu, Zhi
    Jiang, Min-Zhi
    DiCorpo, Daniel
    Gaynor, Sheila M.
    Dey, Rounak
    Arnett, Donna K.
    Benjamin, Emelia J.
    Bis, Joshua C.
    Blangero, John
    Boerwinkle, Eric
    Bowden, Donald W.
    Brody, Jennifer A.
    Cade, Brian E.
    Carson, April P.
    Carlson, Jenna C.
    Chami, Nathalie
    Chen, Yii-Der Ida
    Curran, Joanne E.
    de Vries, Paul S.
    Fornage, Myriam
    Franceschini, Nora
    Freedman, Barry I.
    Gu, Charles
    Heard-Costa, Nancy L.
    He, Jiang
    Hou, Lifang
    Hung, Yi-Jen
    Irvin, Marguerite R.
    Kaplan, Robert C.
    Kardia, Sharon L. R.
    Kelly, Tanika N.
    Konigsberg, Iain
    Kooperberg, Charles
    Kral, Brian G.
    Li, Changwei
    Li, Yun
    Lin, Honghuang
    Liu, Ching-Ti
    Loos, Ruth J. F.
    Mahaney, Michael C.
    Martin, Lisa W.
    Mathias, Rasika A.
    NATURE COMPUTATIONAL SCIENCE, 2025, : 125 - 143
  • [2] Genome-wide large-scale multi-trait analysis characterizes global patterns of pleiotropy and unique trait-specific variants
    Qi, Guanghao
    Chhetri, Surya B.
    Ray, Debashree
    Dutta, Diptavo
    Battle, Alexis
    Bhattacharjee, Samsiddhi
    Chatterjee, Nilanjan
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [3] Gene-by-environment interactions are pervasive among natural genetic variants
    Chen, Shi-An A.
    Kern, Alexander F.
    Ang, Roy Moh Lik
    Xie, Yihua
    Fraser, Hunter B.
    CELL GENOMICS, 2023, 3 (04):
  • [4] Genetic parameters in a rubber tree population: heritabilities, genotype-by-environment interactions and multi-trait correlations
    Guilherme Augusto Peres Silva
    Salvador Alejandro Gezan
    Melissa Pisaroglo de Carvalho
    Lígia Regina Lima Gouvêa
    Cecília Khusala Verardi
    André Luis Bombonato de Oliveira
    Paulo de Souza Gonçalves
    Tree Genetics & Genomes, 2014, 10 : 1511 - 1518
  • [5] Genetic parameters in a rubber tree population: heritabilities, genotype-by-environment interactions and multi-trait correlations
    Peres Silva, Guilherme Augusto
    Gezan, Salvador Alejandro
    de Carvalho, Melissa Pisaroglo
    Lima Gouvea, Ligia Regina
    Verardi, Cecilia Khusala
    Bombonato de Oliveira, Andre Luis
    Goncalves, Paulo de Souza
    TREE GENETICS & GENOMES, 2014, 10 (06) : 1511 - 1518
  • [6] Understanding the genetic basis of potato development using a multi-trait QTL analysis
    Hurtado-Lopez, P. X.
    Tessema, B. B.
    Schnabel, S. K.
    Maliepaard, C.
    Van der Linden, C. G.
    Eilers, P. H. C.
    Jansen, J.
    van Eeuwijk, F. A.
    Visser, R. G. F.
    EUPHYTICA, 2015, 204 (01) : 229 - 241
  • [7] Exploratory data analysis in large-scale genetic studies
    Teo, Yik Y.
    BIOSTATISTICS, 2010, 11 (01) : 70 - 81
  • [8] Multi-Trait Genetic Analysis Reveals Clinically Interpretable Hypertension Subtypes
    Vaura, Felix
    Kim, Hyunkyung
    Udler, Miriam S.
    FinnGen
    Salomaa, Veikko
    Lahti, Leo
    Niiranen, Teemu
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2022, 15 (04): : 317 - 326
  • [9] Understanding the genetic basis of potato development using a multi-trait QTL analysis
    P. X. Hurtado-Lopez
    B. B. Tessema
    S. K. Schnabel
    C. Maliepaard
    C. G. Van der Linden
    P. H. C. Eilers
    J. Jansen
    F. A. van Eeuwijk
    R. G. F. Visser
    Euphytica, 2015, 204 : 229 - 241
  • [10] The genetic architecture of schizophrenia: review of large-scale genetic studies
    Kato, Hidekazu
    Kimura, Hiroki
    Kushima, Itaru
    Takahashi, Nagahide
    Aleksic, Branko
    Ozaki, Norio
    JOURNAL OF HUMAN GENETICS, 2023, 68 (03) : 175 - 182