Infinitely Many Sign-Changing Solutions for the Nonlinear Schrodinger-Poisson System with Super 2-linear Growth at Infinity

被引:1
作者
Wang, Shuai [1 ]
Wu, Xing-Ping [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Poisson system; Sign-changing solutions; Super; 2-linear; Invariant sets of descending flow; NODAL SOLUTIONS; EXISTENCE; EQUATIONS; STATES;
D O I
10.1007/s12346-023-00757-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the sign-changing solutions to the following Schrodinger-Poisson system{-delta u + V(x)u + lambda phi(x)u = f (u), x is an element of R-3, -delta Phi = u(2 ) x is an element of R-3,where lambda > 0 is a parameter and f is super 2-linear at infinity. By using the method of invariant sets of descending flow and a multiple critical points theorem, we prove that this system possesses infinitely many sign-changing solutions for any lambda > 0.
引用
收藏
页数:23
相关论文
共 50 条
[31]   Nonexistence of ground state sign-changing solutions for autonomous Schrodinger-Poisson system with critical growth [J].
Wang, Ying ;
Yuan, Rong .
APPLICABLE ANALYSIS, 2022, :4652-4658
[32]   Infinitely many sign-changing solutions for planar Schrödinger-Poisson system [J].
Zhou, Jianwen ;
Yang, Lu ;
Yu, Yuanyang .
APPLICABLE ANALYSIS, 2025, 104 (04) :612-628
[33]   Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrodinger system [J].
Chen, Zhijie ;
Lin, Chang-Shou ;
Zou, Wenming .
ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 15 :859-897
[34]   Positive and sign-changing solutions of a Schrodinger-Poisson system involving a critical nonlinearity [J].
Huang, Lirong ;
Rocha, Eugenio M. ;
Chen, Jianqing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) :55-69
[35]   Multiplicity and concentration of solutions for a fractional Schrodinger-Poisson system with sign-changing potential [J].
Che, Guofeng ;
Chen, Haibo .
APPLICABLE ANALYSIS, 2023, 102 (01) :253-274
[36]   Ground state sign-changing solutions for a Schrodinger-Poisson system with a critical nonlinearity in R3 [J].
Zhong, Xiao-Jing ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 :166-184
[37]   Sign-changing solutions for the Schrodinger-Poisson system with concave-convex nonlinearities in R3 [J].
Yang, Chen ;
Tang, Chun-Lei .
COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (04) :638-657
[38]   Least energy sign-changing solutions for Schrodinger-Poisson systems with potential well [J].
Chen, Xiao-Ping ;
Tang, Chun-Lei .
ADVANCED NONLINEAR STUDIES, 2022, 22 (01) :390-415
[39]   Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrodinger-Poisson system in R3 [J].
Shuai, Wei ;
Wang, Qingfang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06) :3267-3282
[40]   Infinitely many radial and non-radial sign-changing solutions for Schrodinger equations [J].
Li, Gui-Dong ;
Li, Yong-Yong ;
Tang, Chun-Lei .
ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) :907-920