Why is summertime Arctic sea ice drift speed projected to decrease?

被引:2
|
作者
Ward, Jamie L. [1 ,3 ]
Tandon, Neil F. [1 ,2 ]
机构
[1] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON, Canada
[2] York Univ, Ctr Res Earth & Space Sci, Toronto, ON, Canada
[3] Univ Michigan, Cooperat Inst Great Lakes Res, Ann Arbor, MI USA
关键词
THICKNESS DISTRIBUTION; VARIABILITY; MODEL; SIMULATIONS; DYNAMICS; STRENGTH;
D O I
10.5194/tc-18-995-2024
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Alongside declining Arctic sea ice cover during the satellite era, there have also been positive trends in sea ice Arctic average drift speed (AADS) during both winter and summer. This increasing sea ice motion is an important consideration for marine transportation as well as a potential feedback on the rate of sea ice area decline. Earlier studies have shown that nearly all modern global climate models (GCMs) produce positive March (winter) AADS trends for both the historical period and future warming scenarios. However, most GCMs do not produce positive September (summer) AADS trends during the historical period, and nearly all GCMs project decreases in September AADS with future warming. This study seeks to understand the mechanisms driving these projected summertime AADS decreases using output from 17 models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) along with 10 runs of the Community Earth System Model version 2 Large Ensemble (CESM2-LE). The CESM2-LE analysis reveals that the projected summertime AADS decreases are due to changes in sea surface height (SSH) and wind stress which act to reduce sea ice motion in the Beaufort Gyre and Transpolar Drift. During March, changes in internal stress and wind stress counteract tilt force changes and produce positive drift speed trends. The simulated wintertime mechanisms are supported by earlier observational studies, which gives confidence that the mechanisms driving summertime projections are likely also at work in the real world. However, the precise strength of these mechanisms is likely not realistic during summer, and additional research is needed to assess whether the simulated summertime internal stress changes are too weak compared to changes in other forces. The projected summertime wind stress changes are associated with reduced sea level pressure north of Greenland, which is expected with the northward shift of the jet streams. The projected summertime SSH changes are primarily due to freshening of the Arctic Ocean (i.e., halosteric expansion), with thermal expansion acting as a secondary contribution. The associated ocean circulation changes lead to additional piling up of water in the Russian shelf regions, which further reinforces the SSH increase. Analysis of CMIP6 output provides preliminary evidence that some combination of wind stress and SSH changes is also responsible for projected AADS decreases in other models, but more work is needed to assess mechanisms in more detail. Altogether, our results motivate additional studies to understand the roles of SSH and wind stress in driving changes in Arctic sea ice motion.
引用
收藏
页码:995 / 1012
页数:18
相关论文
共 50 条
  • [1] Arctic Sea Ice Drift Measured by Shipboard Marine Radar
    Lund, B.
    Graber, H. C.
    Persson, P. O. G.
    Smith, M.
    Doble, M.
    Thomson, J.
    Wadhams, P.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2018, 123 (06) : 4298 - 4321
  • [2] Impact of the Arctic oscillation from March on summertime sea ice
    Lim, Young-Kwon
    Wu, Dong L.
    Kim, Kyu-Myong
    Lee, Jae N.
    ENVIRONMENTAL RESEARCH-CLIMATE, 2022, 1 (02):
  • [3] On the effects of the timing of an intense cyclone on summertime sea-ice evolution in the Arctic
    Tian, Zhongxiang
    Liang, Xi
    Zhao, Fu
    Liu, Na
    Li, Ming
    Li, Chunhua
    ANNALS OF GLACIOLOGY, 2024, 65
  • [4] Linear Trends in Sea Ice Drift Fields in the Arctic Ocean
    Lipatov, M. A.
    Volkov, V. A.
    May, R. I.
    OCEANOLOGY, 2021, 61 (03) : 297 - 304
  • [5] Prospects for Seasonal Prediction of Summertime Trans-Arctic Sea Ice Path
    Winton, Michael
    Bushuk, Mitchell
    Zhang, Yongfei
    Hurlin, Bill
    Jia, Liwei
    Johnson, Nathaniel C.
    Lu, Feiyu
    JOURNAL OF CLIMATE, 2022, 35 (13) : 4253 - 4263
  • [6] Robust Arctic warming caused by projected Antarctic sea ice loss
    England, M. R.
    Polvani, L. M.
    Sun, L.
    ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (10)
  • [7] Summertime changes in climate extremes over the peripheral Arctic regions after a sudden sea ice retreat
    Delhaye, Steve
    Fichefet, Thierry
    Massonnet, Francois
    Docquier, David
    Msadek, Rym
    Chripko, Svenya
    Roberts, Christopher
    Keeley, Sarah
    Senan, Retish
    WEATHER AND CLIMATE DYNAMICS, 2022, 3 (02): : 555 - 573
  • [8] Influence of the representation of landfast ice on the simulation of the Arctic sea ice and Arctic Ocean halocline
    Sterlin, Jean
    Orval, Tim
    Lemieux, Jean-Francois
    Rousset, Clement
    Fichefet, Thierry
    Massonnet, Francois
    Raulier, Jonathan
    OCEAN DYNAMICS, 2024, 74 (05) : 407 - 437
  • [9] Responses of the Arctic sea ice drift to general warming and intraseasonal oscillation in the local atmosphere
    Li, Ming
    Liang, Xi
    Liu, Na
    Zhao, Fu
    Tian, Zhongxiang
    CLIMATE DYNAMICS, 2024, 62 (09) : 9303 - 9318
  • [10] Impacts of Projected Arctic Sea Ice Loss on Daily Weather Patterns over North America
    Gervais, Melissa
    Sun, Lantao
    Deserc, Clara
    JOURNAL OF CLIMATE, 2024, 37 (03) : 1065 - 1085