Nearest Neighbor Search for Summarization of Japanese Judgment Documents

被引:0
作者
Shimbo, Akito [1 ]
Sugawara, Yuta [1 ]
Yamada, Hiroaki [1 ]
Tokunaga, Takenobu [1 ]
机构
[1] Tokyo Inst Technol, Tokyo, Japan
来源
LEGAL KNOWLEDGE AND INFORMATION SYSTEMS | 2023年 / 379卷
关键词
summarization; large language model; nearest neighbor search; Japanese judgment document;
D O I
10.3233/FAIA230984
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the increasing demand for summarizing Japanese judgment documents, the automatic generation of high-quality summaries by large language models (LLMs) is expected. We propose a method to select exemplars using the nearest neighbor search for the one-shot learning method. The experiments showed our method outperforms baseline methods.
引用
收藏
页码:335 / 340
页数:6
相关论文
共 6 条
[1]  
Banno S, 2005, tegakari hyogen ni motozuku hanketsubun no jidou youyaku
[2]  
Deroy A, P 3 INT WORKSH ART I
[3]  
Patil R, 2022, PR MACH LEARN RES, V203, P103
[4]  
Tanikawa K, hanrei jouhou no o-pun de-ta ka
[5]  
Vadlamannati S, 2023, INLG OR SESS 3 LEV L
[6]  
Wang L, 2024, Arxiv, DOI [arXiv:2212.03533, DOI 10.48550/ARXIV.2212.03533]