High Free Volume Polyelectrolytes for Anion Exchange Membrane Water Electrolyzers with a Current Density of 13.39 A cm-2 and a Durability of 1000 h

被引:42
作者
Hu, Chuan [1 ]
Kang, Hyun Woo [2 ]
Jung, Seung Won [1 ]
Liu, Mei-Ling [1 ]
Lee, Young Jun [1 ]
Park, Jong Hyeong [1 ]
Kang, Na Yoon [1 ]
Kim, Myeong-Geun [3 ]
Yoo, Sung Jong [3 ]
Park, Chi Hoon [2 ]
Lee, Young Moo [1 ]
机构
[1] Hanyang Univ, Coll Engn, Dept Energy Engn, Seoul 04763, South Korea
[2] Gyeongsang Natl Univ, Future Convergence Technol Res Inst, Dept Energy Engn, Jinju 52725, South Korea
[3] Korea Inst Sci & Technol KIST, Hydrogen Fuel Cell Res Ctr, Seoul 02792, South Korea
关键词
anion exchange polyelectrolyte; durability; high free volume; rigid backbone; water electrolysis; PIPERIDINIUM) MEMBRANES; HIGH-PERFORMANCE; FORCE-FIELD; FUEL-CELLS; ION; IONOMERS; POLYMER; COMPASS; TRANSPORT; DESIGN;
D O I
10.1002/advs.202306988
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rational design of the current anion exchange polyelectrolytes (AEPs) is challenging to meet the requirements of both high performance and durability in anion exchange membrane water electrolyzers (AEMWEs). Herein, highly-rigid-twisted spirobisindane monomer is incorporated in poly(aryl-co-aryl piperidinium) backbone to construct continuous ionic channels and to maintain dimensional stability as promising materials for AEPs. The morphologies, physical, and electrochemical properties of the AEPs are investigated based on experimental data and molecular dynamics simulations. The present AEPs possess high free volumes, excellent dimensional stability, hydroxide conductivity (208.1 mS cm(-1) at 80 C-degrees), and mechanical properties. The AEMWE of the present AEPs achieves a new current density record of 13.39 and 10.7 A cm(-2) at 80 C-degrees by applying IrO2 and nonprecious anode catalyst, respectively, along with outstanding in situ durability under 1 A cm(-2) for 1000 h with a low voltage decay rate of 53 mu V h(-1). Moreover, the AEPs can be applied in fuel cells and reach a power density of 2.02 W cm(-2) at 80 C-degrees under fully humidified conditions, and 1.65 W cm(-2) at 100 C-degrees, 30% relative humidity. This study provides insights into the design of high-performance AEPs for energy conversion devices.
引用
收藏
页数:13
相关论文
共 86 条
[1]   Electrode Separators for the Next-Generation Alkaline Water Electrolyzers [J].
Aili, David ;
Kraglund, Mikkel Rykaer ;
Rajappan, Sinu C. ;
Serhiichuk, Dmytro ;
Xia, Yifan ;
Deimede, Valadoula ;
Kallitsis, Joannis ;
Bae, Chulsung ;
Jannasch, Patric ;
Henkensmeier, Dirk ;
Jensen, Jens Oluf .
ACS ENERGY LETTERS, 2023, 8 (04) :1900-1910
[2]   Branched, Side-Chain Grafted Polyarylpiperidine Anion Exchange Membranes for Fuel Cell Application [J].
Bai, Lei ;
Ma, Lingling ;
Li, Lv ;
Zhang, Anran ;
Yan, Xiaoming ;
Zhang, Fengxiang ;
He, Gaohong .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (07) :6957-6967
[3]   Visualization of Hydroxide Ion Formation upon Electrolytic Water Splitting in an Anion Exchange Membrane [J].
Cao, Xinzhi ;
Novitski, David ;
Holdcroft, Steven .
ACS MATERIALS LETTERS, 2019, 1 (03) :362-366
[4]   Oligomeric chain extender-derived anion conducting membrane materials with poly(p-phenylene)-based architecture for fuel cells and water electrolyzers [J].
Cha, Min Suc ;
Park, Ji Eun ;
Kim, Sungjun ;
Shin, Sang-Hun ;
Yang, Seok Hwan ;
Lee, Seung Jae ;
Kim, Tae-Ho ;
Yu, Duk Man ;
So, Soonyong ;
Oh, Kang Min ;
Sung, Yung-Eun ;
Cho, Yong-Hun ;
Lee, Jang Yong .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (17) :9693-9706
[5]   Poly(carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices [J].
Cha, Min Suc ;
Park, Ji Eun ;
Kim, Sungjun ;
Han, Seung-Hui ;
Shin, Sang-Hun ;
Yang, Seok Hwan ;
Kim, Tae-Ho ;
Yu, Duk Man ;
So, Soonyong ;
Hong, Young Taik ;
Yoon, Sang Jun ;
Oh, Seong-Geun ;
Kang, Sun Young ;
Kim, Ok-Hee ;
Park, Hyun S. ;
Bae, Byungchan ;
Sung, Yung-Eun ;
Cho, Yong-Hun ;
Lee, Jang Yong .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3633-3645
[6]   Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments [J].
Chatenet, Marian ;
Pollet, Bruno G. ;
Dekel, Dario R. ;
Dionigi, Fabio ;
Deseure, Jonathan ;
Millet, Pierre ;
Braatz, Richard D. ;
Bazant, Martin Z. ;
Eikerling, Michael ;
Staffell, Iain ;
Balcombe, Paul ;
Shao-Horn, Yang ;
Schaefer, Helmut .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (11) :4583-4762
[7]   Anion Exchange Membranes for Fuel Cells: State-of-the-Art and Perspectives [J].
Chen, Huanhuan ;
Tao, Ran ;
Bang, Ki-Taek ;
Shao, Minhua ;
Kim, Yoonseob .
ADVANCED ENERGY MATERIALS, 2022, 12 (28)
[8]   Anion-conducting polyelectrolytes for energy devices [J].
Chen, Nanjun ;
Lee, Young Moo .
TRENDS IN CHEMISTRY, 2022, 4 (03) :236-249
[9]   Di-piperidinium-crosslinked poly(fluorenyl-co-terphenyl piperidinium)s for high-performance alkaline exchange membrane fuel cells [J].
Chen, Nanjun ;
Park, Jong Hyeong ;
Hu, Chuan ;
Wang, Ho Hyun ;
Kim, Hae Min ;
Kang, Na Yoon ;
Lee, Young Moo .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (07) :3678-3687
[10]   High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm-2 and a durability of 1000 hours [J].
Chen, Nanjun ;
Paek, Sae Yane ;
Lee, Ju Yeon ;
Park, Jong Hyeong ;
Lee, So Young ;
Lee, Young Moo .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (12) :6338-6348