Accounting for endogenous effects in decision-making with a non-linear diffusion decision model

被引:1
作者
Hoxha, Isabelle [1 ,2 ]
Chevallier, Sylvain [3 ]
Ciarchi, Matteo [4 ]
Glasauer, Stefan [5 ]
Delorme, Arnaud [6 ,7 ]
Amorim, Michel-Ange [1 ,2 ]
机构
[1] Univ Paris Saclay, CIAMS, Paris, France
[2] Univ Orleans, CIAMS, Orleans, France
[3] Univ Paris Saclay, LISN, Paris, France
[4] Max Planck Inst Phys Komplexer Syst, Dresden, Germany
[5] Brandenburg Univ Technol Cottbus Senftenberg, Computat Neurosci, Cottbus, Germany
[6] Univ Toulouse III Paul Sabatier, CerCo, CNRS, Toulouse, France
[7] Univ Calif San Diego, Swartz Ctr Computat Neurosci INC, La Jolla, CA 92093 USA
关键词
CHOICE; TIME; OSCILLATIONS; INTEGRATION; BIASES;
D O I
10.1038/s41598-023-32841-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Drift-Diffusion Model (DDM) is widely accepted for two-alternative forced-choice decision paradigms thanks to its simple formalism and close fit to behavioral and neurophysiological data. However, this formalism presents strong limitations in capturing inter-trial dynamics at the single-trial level and endogenous influences. We propose a novel model, the non-linear Drift-Diffusion Model (nl-DDM), that addresses these issues by allowing the existence of several trajectories to the decision boundary. We show that the non-linear model performs better than the drift-diffusion model for an equivalent complexity. To give better intuition on the meaning of nl-DDM parameters, we compare the DDM and the nl-DDM through correlation analysis. This paper provides evidence of the functioning of our model as an extension of the DDM. Moreover, we show that the nl-DDM captures time effects better than the DDM. Our model paves the way toward more accurately analyzing across-trial variability for perceptual decisions and accounts for peri-stimulus influences.
引用
收藏
页数:15
相关论文
共 53 条
[1]   Adaptable history biases in human perceptual decisions [J].
Abrahamyan, Arman ;
Silva, Laura Luz ;
Dakin, Steven C. ;
Carandini, Matteo ;
Gardner, Justin L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (25) :E3548-E3557
[2]   A machine learning approach to predict perceptual decisions: an insight into face pareidolia [J].
Barik K. ;
Daimi S.N. ;
Jones R. ;
Bhattacharya J. ;
Saha G. .
Brain Informatics, 2019, 6 (01)
[3]   Low pre-stimulus EEG alpha power amplifies visual awareness but not visual sensitivity [J].
Benwell, Christopher S. Y. ;
Coldea, Andra ;
Harvey, Monika ;
Thut, Gregor .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2022, 55 (11-12) :3125-3140
[4]   The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks [J].
Bogacz, Rafal ;
Brown, Eric ;
Moehlis, Jeff ;
Holmes, Philip ;
Cohen, Jonathan D. .
PSYCHOLOGICAL REVIEW, 2006, 113 (04) :700-765
[5]   DECISION FIELD-THEORY - A DYNAMIC COGNITIVE APPROACH TO DECISION-MAKING IN AN UNCERTAIN ENVIRONMENT [J].
BUSEMEYER, JR ;
TOWNSEND, JT .
PSYCHOLOGICAL REVIEW, 1993, 100 (03) :432-459
[6]   The Weakened Relationship Between Prestimulus Alpha Oscillations and Response Time in Older Adults With Mild Cognitive Impairment [J].
Chen, Yiqi ;
He, Hao ;
Xu, Pengfei ;
Wang, Jing ;
Qiu, Yuehong ;
Feng, Wei ;
Luo, Yuejia ;
Hu, Li ;
Guan, Qing .
FRONTIERS IN HUMAN NEUROSCIENCE, 2020, 14
[7]   Decisions in Changing Conditions: The Urgency-Gating Model [J].
Cisek, Paul ;
Puskas, Genevieve Aude ;
El-Murr, Stephany .
JOURNAL OF NEUROSCIENCE, 2009, 29 (37) :11560-11571
[8]   Microstimulation of visual cortex affects the speed of perceptual decisions [J].
Ditterich, J ;
Mazurek, ME ;
Shadlen, MN .
NATURE NEUROSCIENCE, 2003, 6 (08) :891-898
[9]   Evidence Accumulation Models: Current Limitations and Future Directions [J].
Evans, Nathan J. ;
Wagenmakers, Eric-Jan .
QUANTITATIVE METHODS FOR PSYCHOLOGY, 2020, 16 (02) :73-90
[10]   Normative evidence accumulation in unpredictable environments [J].
Glaze, Christopher M. ;
Kable, Joseph W. ;
Gold, Joshua I. .
ELIFE, 2015, 4