Solar driven CO2 reduction: from materials to devices

被引:24
|
作者
Wan, Lili [1 ]
Chen, Rong [1 ]
Cheung, Daniel Wun Fung [1 ]
Wu, Linxiao [1 ]
Luo, Jingshan [1 ]
机构
[1] Nankai Univ, Inst Photoelect Thin Film Devices & Technol, Solar Energy Res Ctr, Minist Educ Engn Res Ctr Thin Film Photoelect Tech, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE; ARTIFICIAL PHOTOSYNTHESIS; PHOTOELECTROCHEMICAL REDUCTION; PHOTOCATALYTIC REDUCTION; BIPOLAR MEMBRANE; PHOTOELECTROCATALYTIC REDUCTION; ELECTROCHEMICAL REDUCTION; CONVERSION EFFICIENCY; TIO2;
D O I
10.1039/d3ta00267e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar driven CO2 reduction for the production of fuels and chemicals is a promising technology for achieving carbon neutrality. Photocatalytic CO2 reduction, photoelectrochemical CO2 reduction and photovoltaic-electrochemical CO2 reduction, are three main approaches for solar driven CO2 reduction that have attracted a lot of interest in both the academic and industrial communities. However, in spite of the decades of work that have been devoted to this research area, low solar to fuel efficiency, poor product selectivity and unsatisfactory stability continue to impede the application of these three technologies. Herein, we summarize the recent advances in photo-absorbers, catalysts and device designs for solar driven CO2 reduction and have identified the following requirements that are essential for realizing a highly efficient solar driven CO2 reduction system: optimized photo-absorbers, tailored catalysts, well-designed devices and the synergistic operation of these three parts. In addition, we provide perspectives for the future development of the solar driven CO2 reduction field.
引用
收藏
页码:12499 / 12520
页数:22
相关论文
共 50 条
  • [1] Modeling diurnal and annual ethylene generation from solar-driven electrochemical CO2 reduction devices
    Yap, Kyra M. K.
    Wei, William J.
    Pabon, Melanie Rodriguez
    King, Alex J.
    Bui, Justin C.
    Wei, Lingze
    Lee, Sang-Won
    Weber, Adam Z.
    Bell, Alexis T.
    Nielander, Adam C.
    Jaramillo, Thomas F.
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (07) : 2453 - 2467
  • [2] Recent advances in solar-driven photothermal nanostructured materials for CO2 reduction: A review
    Pan, Deng
    Wang, Yanan
    Liang, Qian
    Zhou, Man
    Li, Xiazhang
    Xu, Song
    Li, Zhongyu
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (04):
  • [3] Understanding the solar-driven reduction of CO2 on doped ceria
    Ramos-Fernandez, Enrique V.
    Shiju, N. Raveendran
    Rothenberg, Gadi
    RSC ADVANCES, 2014, 4 (32): : 16456 - 16463
  • [4] Experimental and Modeling Study for the Solar-Driven CO2 Electrochemical Reduction to CO
    Agliuzza, Matteo
    Speranza, Roberto
    Lamberti, Andrea
    Pirri, Candido Fabrizio
    Sacco, Adriano
    APPLIED SCIENCES-BASEL, 2025, 15 (02):
  • [5] MXenes as co-catalysts for the solar-driven photocatalytic reduction of CO2
    Zhao, Yang
    Que, Meidan
    Chen, Jin
    Yang, Chunli
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (46) : 16258 - 16281
  • [6] Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates
    Gurudayal
    Bullock, James
    Sranko, David F.
    Towle, Clarissa M.
    Lum, Yanwei
    Hettick, Mark
    Scott, M. C.
    Javey, Ali
    Ager, Joel
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (10) : 2222 - 2230
  • [7] Strategies and reaction systems for solar-driven CO2 reduction by water
    Bian, Ji
    Zhang, Ziqing
    Liu, Ye
    Chen, Enqi
    Tang, Junwang
    Jing, Liqiang
    CARBON NEUTRALITY, 2022, 1 (01):
  • [8] Copper ternary oxides as photocathodes for solar-driven CO2 reduction
    Gonzaga, Ian Lorenzo E.
    Mercado, Candy C.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2022, 61 (01) : 430 - 457
  • [9] Recent progress in solar-driven CO2 reduction to multicarbon products
    Li, Mengqian
    Han, Zequn
    Hu, Qinyuan
    Fan, Wenya
    Hu, Qing
    He, Dongpo
    Chen, Qingxia
    Jiao, Xingchen
    Xie, Yi
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (20) : 9964 - 9975
  • [10] Concentrated Solar-Driven Catalytic CO2 Reduction: From Fundamental Research to Practical Applications
    Ren, Yuqi
    Lan, Shengnan
    Zhu, Yuan-Hao
    Peng, Ruoxuan
    He, Hongbin
    Si, Yitao
    Huang, Kai
    Li, Naixu
    CHEMSUSCHEM, 2025,