Riemann-Hilbert problems and N-soliton solutions of the nonlocal reverse space-time Chen-Lee-Liu equation

被引:4
作者
Liu, Tongshuai [1 ]
Xia, Tiecheng [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Hilbert problem; nonlocal reverse space-time Chen-Lee-Liu equation; N-soliton solution; INVERSE SCATTERING; TRANSFORM;
D O I
10.1088/1572-9494/acb81a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the N-soliton solutions to the nonlocal reverse space-time Chen-Lee-Liu equation have been derived. Under the nonlocal symmetry reduction to the matrix spectral problem, the nonlocal reverse space-time Chen-Lee-Liu equation can be obtained. Based on the spectral problem, the specific matrix Riemann-Hilbert problem is constructed for this nonlocal equation. Through solving this associated Riemann-Hilbert problem, the N-soliton solutions to this nonlocal equation can be obtained in the case of the jump matrix as an identity matrix.
引用
收藏
页数:8
相关论文
共 28 条
[1]   INVERSE SCATTERING TRANSFORM FOR THE NONLOCAL REVERSE SPACE-TIME NONLINEAR SCHRODINGER EQUATION [J].
Ablowitz, M. J. ;
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Musslimani, Z. H. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 196 (03) :1241-1267
[2]  
Ablowitz M.J., 1981, Solitons and the Inverse Scattering Transform
[3]   Integrable space-time shifted nonlocal nonlinear equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICS LETTERS A, 2021, 409
[4]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[5]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[6]   Integrable systems of derivative nonlinear Schrodinger type and their multi-Hamiltonian structure [J].
Fan, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03) :513-519
[7]   A unified transform method for solving linear and certain nonlinear PDEs [J].
Fokas, AS .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1962) :1411-1443
[8]   Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrodinger equation [J].
Guo, Boling ;
Ling, Liming .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
[9]   Riemann-Hilbert approach and N-soliton formula for a higher-order Chen-Lee-Liu equation [J].
Hu, Juan ;
Xu, Jian ;
Yu, Guo-Fu .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2018, 25 (04) :633-649
[10]   BILINEARIZATION OF A GENERALIZED DERIVATIVE NONLINEAR SCHRODINGER-EQUATION [J].
KAKEI, S ;
SASA, N ;
SATSUMA, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (05) :1519-1523