Bifurcation analysis in a diffusive predator-prey model with spatial memory of prey, Allee effect and maturation delay of predator

被引:48
作者
Li, Shuai [1 ]
Yuan, Sanling [1 ]
Jin, Zhen [2 ]
Wang, Hao [3 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Shanxi Univ, Complex Syst Res Ctr, Taiyuan 030006, Shanxi, Peoples R China
[3] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G2G1, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Spatial memory; Delay-dependent coefficients; Stability switches; Predator-prey; Normal form; HOPF-BIFURCATION; DIFFERENTIAL-EQUATIONS; SYSTEMS;
D O I
10.1016/j.jde.2023.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we formulate a spatial model with memory delay of the prey, Allee effect and matura-tion delay with delay-dependent coefficients of predators. We first explore the model without delays and diffusions, and find that it can undergo a saddle-node bifurcation when the intensity of Allee effect is at the tipping point. Then for the scenario of stability of the coexistence steady state without delays, we ob-tain the crossing curves on the delays plane. The model can undergo Hopf bifurcation when delays pass through these crossing curves from a stable region to an unstable one. We further calculate the normal form of Hopf bifurcation and hence obtain the direction of Hopf bifurcation and the stability of the bifurcation periodic solutions. It is shown that the model can possess multiple stability switches and a stable spatially heterogeneous periodic solution with mode-4 as delays vary. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 63
页数:32
相关论文
共 50 条
[1]   Memory and resource tracking drive blue whale migrations [J].
Abrahms, Briana ;
Hazen, Elliott L. ;
Aikens, Ellen O. ;
Savoca, Matthew S. ;
Goldbogen, Jeremy A. ;
Bograd, Steven J. ;
Jacox, Michael G. ;
Irvine, Ladd M. ;
Palacios, Daniel M. ;
Mate, Bruce R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (12) :5582-5587
[2]   Animal aggregations [J].
Allee, WC .
QUARTERLY REVIEW OF BIOLOGY, 1927, 2 (03) :367-398
[3]   Geometric stability switch criteria in delay differential equations with two delays and delay dependent parameters [J].
An, Qi ;
Beretta, Edoardo ;
Kuang, Yang ;
Wang, Chuncheng ;
Wang, Hao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (11) :7073-7100
[4]   Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system [J].
Banerjee, Malay ;
Petrovskii, Sergei .
THEORETICAL ECOLOGY, 2011, 4 (01) :37-53
[5]   Multiple Allee effects and population management [J].
Berec, Ludek ;
Angulo, Elena ;
Courchamp, Franck .
TRENDS IN ECOLOGY & EVOLUTION, 2007, 22 (04) :185-191
[6]   Geometric stability switch criteria in delay differential systems with delay dependent parameters [J].
Beretta, E ;
Kuang, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (05) :1144-1165
[7]   PREGNANCY INCENTIVES, PREDATION CONSTRAINTS AND HABITAT SHIFTS - EXPERIMENTAL AND FIELD EVIDENCE FOR WILD BIGHORN SHEEP [J].
BERGER, J .
ANIMAL BEHAVIOUR, 1991, 41 :61-+
[8]   How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses [J].
Boukal, David S. ;
Sabelis, Maurice W. ;
Berec, Ludek .
THEORETICAL POPULATION BIOLOGY, 2007, 72 (01) :136-147
[9]  
Chow S. N., 2012, Methods of Bifurcation Theory
[10]  
Dennis B., 1989, Natural Resource Modeling, V3, P481