Artificial intelligence and automation in endoscopy and surgery

被引:61
作者
Chadebecq, Francois [1 ]
Lovat, Laurence B. [1 ]
Stoyanov, Danail [1 ]
机构
[1] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
COMPUTER-AIDED DIAGNOSIS; GASTROINTESTINAL ENDOSCOPY; RECOGNITION; COLONOSCOPY; SEGMENTATION; CLASSIFICATION; LESIONS; RECONSTRUCTION; VALIDATION; ROBOTICS;
D O I
10.1038/s41575-022-00701-y
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Modern endoscopy relies on digital technology, from high-resolution imaging sensors and displays to electronics connecting configurable illumination and actuation systems for robotic articulation. In addition to enabling more effective diagnostic and therapeutic interventions, the digitization of the procedural toolset enables video data capture of the internal human anatomy at unprecedented levels. Interventional video data encapsulate functional and structural information about a patient's anatomy as well as events, activity and action logs about the surgical process. This detailed but difficult-to-interpret record from endoscopic procedures can be linked to preoperative and postoperative records or patient imaging information. Rapid advances in artificial intelligence, especially in supervised deep learning, can utilize data from endoscopic procedures to develop systems for assisting procedures leading to computer-assisted interventions that can enable better navigation during procedures, automation of image interpretation and robotically assisted tool manipulation. In this Perspective, we summarize state-of-the-art artificial intelligence for computer-assisted interventions in gastroenterology and surgery. Advances in artificial intelligence (AI) are changing endoscopy and gastrointestinal surgery, including computer-assisted detection and diagnosis, computer-aided navigation, robot-assisted intervention and automated reporting. This Perspective introduces the role of AI in computer-assisted interventions in gastroenterology with insights on regulatory aspects and the challenges ahead.
引用
收藏
页码:171 / 182
页数:12
相关论文
共 164 条
[31]  
Docea R., 2021, J MED IMAGING, V11598, P62
[32]   Articulated Multi-Instrument 2-D Pose Estimation Using Fully Convolutional Networks [J].
Du, Xiaofei ;
Kurmann, Thomas ;
Chang, Ping-Lin ;
Allan, Maximilian ;
Ourselin, Sebastien ;
Sznitman, Raphael ;
Kelly, John D. ;
Stoyanov, Danail .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (05) :1276-1287
[33]   Detecting Deficient Coverage in Colonoscopies [J].
Freedman, Daniel ;
Blau, Yochai ;
Katzir, Liran ;
Aides, Amit ;
Shimshoni, Ilan ;
Veikherman, Danny ;
Golany, Tomer ;
Gordon, Ariel ;
Corrado, Greg ;
Matias, Yossi ;
Rivlin, Ehud .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (11) :3451-3462
[34]   Video-based surgical skill assessment using 3Dconvolutional neural networks [J].
Funke, Isabel ;
Mees, Soeren Torge ;
Weitz, Juergen ;
Speidel, Stefanie .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (07) :1217-1225
[35]   Toward a standard ontology of surgical process models [J].
Gibaud, Bernard ;
Forestier, Germain ;
Feldmann, Carolin ;
Ferrigno, Giancarlo ;
Goncalves, Paulo ;
Haidegger, Tamas ;
Julliard, Chantal ;
Katic, Darko ;
Kenngott, Hannes ;
Maier-Hein, Lena ;
Maerz, Keno ;
de Momi, Elena ;
Nagy, Denes Akos ;
Nakawala, Hirenkumar ;
Neumann, Juliane ;
Neumuth, Thomas ;
Balderrama, Javier Rojas ;
Speidel, Stefanie ;
Wagner, Martin ;
Jannin, Pierre .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (09) :1397-1408
[36]   SD-DefSLAM: Semi-Direct Monocular SLAM for Deformable and Intracorporeal Scenes [J].
Gomez-Rodriguez, Juan J. ;
Lamarca, Jose ;
Morlana, Javier ;
Tardos, Juan D. ;
Montiel, Jose M. M. .
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, :5170-5177
[37]  
Gonzalez Cristina, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12263), P595, DOI 10.1007/978-3-030-59716-0_57
[38]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[39]   Robotic Endoscope Control Via Autonomous Instrument Tracking [J].
Gruijthuijsen, Caspar ;
Garcia-Peraza-Herrera, Luis C. ;
Borghesan, Gianni ;
Reynaerts, Dominiek ;
Deprest, Jan ;
Ourselin, Sebastien ;
Vercauteren, Tom ;
Vander Poorten, Emmanuel .
FRONTIERS IN ROBOTICS AND AI, 2022, 9
[40]  
Gurcan I, 2019, INT CONF ACOUST SPEE, P2887, DOI [10.1109/icassp.2019.8683849, 10.1109/ICASSP.2019.8683849]