Artificial intelligence and automation in endoscopy and surgery

被引:43
作者
Chadebecq, Francois [1 ]
Lovat, Laurence B. [1 ]
Stoyanov, Danail [1 ]
机构
[1] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
COMPUTER-AIDED DIAGNOSIS; GASTROINTESTINAL ENDOSCOPY; RECOGNITION; COLONOSCOPY; SEGMENTATION; CLASSIFICATION; LESIONS; RECONSTRUCTION; VALIDATION; ROBOTICS;
D O I
10.1038/s41575-022-00701-y
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Modern endoscopy relies on digital technology, from high-resolution imaging sensors and displays to electronics connecting configurable illumination and actuation systems for robotic articulation. In addition to enabling more effective diagnostic and therapeutic interventions, the digitization of the procedural toolset enables video data capture of the internal human anatomy at unprecedented levels. Interventional video data encapsulate functional and structural information about a patient's anatomy as well as events, activity and action logs about the surgical process. This detailed but difficult-to-interpret record from endoscopic procedures can be linked to preoperative and postoperative records or patient imaging information. Rapid advances in artificial intelligence, especially in supervised deep learning, can utilize data from endoscopic procedures to develop systems for assisting procedures leading to computer-assisted interventions that can enable better navigation during procedures, automation of image interpretation and robotically assisted tool manipulation. In this Perspective, we summarize state-of-the-art artificial intelligence for computer-assisted interventions in gastroenterology and surgery. Advances in artificial intelligence (AI) are changing endoscopy and gastrointestinal surgery, including computer-assisted detection and diagnosis, computer-aided navigation, robot-assisted intervention and automated reporting. This Perspective introduces the role of AI in computer-assisted interventions in gastroenterology with insights on regulatory aspects and the challenges ahead.
引用
收藏
页码:171 / 182
页数:12
相关论文
共 164 条
  • [11] Update on the Paris classification of superficial neoplastic lesions in the digestive tract
    Axon, A
    Diebold, MD
    Fujino, M
    Fujita, R
    Genta, RM
    Gonvers, JJ
    Guelrud, M
    Inoue, H
    Jung, M
    Kashida, H
    Kudo, S
    Lambert, R
    Lightdale, C
    Nakamura, T
    Neuhaus, H
    Niwa, H
    Ogoshi, K
    Rey, JF
    Riddell, R
    Sasako, M
    Shimoda, T
    Suzuki, H
    Tytgat, GNJ
    Wang, K
    Watanabe, H
    Yamakawa, T
    Yoshida, S
    [J]. ENDOSCOPY, 2005, 37 (06) : 570 - 578
  • [12] SUPR-GAN: SUrgical PRediction GAN for Event Anticipation in Laparoscopic and Robotic Surgery
    Ban, Yutong
    Rosman, Guy
    Eckhoff, Jennifer A.
    Ward, Thomas M.
    Hashimoto, Daniel A.
    Kondo, Taisei
    Iwaki, Hidekazu
    Meireles, Ozanan R.
    Rus, Daniela
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 5741 - 5748
  • [13] Bawa V. S., 2021, PREPRINT
  • [14] A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets
    Bayoudh, Khaled
    Knani, Raja
    Hamdaoui, Faycal
    Mtibaa, Abdellatif
    [J]. VISUAL COMPUTER, 2022, 38 (08) : 2939 - 2970
  • [15] Quality standards in upper gastrointestinal endoscopy: a position statement of the British Society of Gastroenterology (BSG) and Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland (AUGIS)
    Beg, Sabina
    Ragunath, Krish
    Wyman, Andrew
    Banks, Matthew
    Trudgill, Nigel
    Pritchard, Mark D.
    Riley, Stuart
    Anderson, John
    Griffiths, Helen
    Bhandari, Pradeep
    Kaye, Phillip
    Veitch, Andrew
    [J]. GUT, 2017, 66 (11) : 1886 - 1899
  • [16] Towards automatic polyp detection with a polyp appearance model
    Bernal, J.
    Sanchez, J.
    Vilarino, F.
    [J]. PATTERN RECOGNITION, 2012, 45 (09) : 3166 - 3182
  • [17] Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge
    Bernal, Jorge
    Tajkbaksh, Nima
    Sanchez, Francisco Javier
    Matuszewski, Bogdan J.
    Chen, Hao
    Yu, Lequan
    Angermann, Quentin
    Romain, Olivier
    Rustad, Bjorn
    Balasingham, Ilangko
    Pogorelov, Konstantin
    Choi, Sungbin
    Debard, Quentin
    Maier-Hein, Lena
    Speidel, Stefanie
    Stoyanov, Danail
    Brandao, Patrick
    Cordova, Henry
    Sanchez-Montes, Cristina
    Gurudu, Suryakanth R.
    Fernandez-Esparrach, Gloria
    Dray, Xavier
    Liang, Jianming
    Histace, Aymeric
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) : 1231 - 1249
  • [18] Depth Perception of Surgeons in Minimally Invasive Surgery
    Bogdanova, Rositsa
    Boulanger, Pierre
    Zheng, Bin
    [J]. SURGICAL INNOVATION, 2016, 23 (05) : 515 - 524
  • [19] Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model
    Byrne, Michael F.
    Chapados, Nicolas
    Soudan, Florian
    Oertel, Clemens
    Linares Perez, Milagros
    Kelly, Raymond
    Iqbal, Nadeem
    Chandelier, Florent
    Rex, Douglas K.
    [J]. GUT, 2019, 68 (01) : 94 - 100
  • [20] New technologies improve adenoma detection rate, adenoma miss rate, and polyp detection rate: a systematic review and meta-analysis
    Castaneda, Daniel
    Popov, Violeta B.
    Verheyen, Elijah
    Wander, Praneet
    Gross, Seth A.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2018, 88 (02) : 209 - +