Artificial intelligence and automation in endoscopy and surgery

被引:59
作者
Chadebecq, Francois [1 ]
Lovat, Laurence B. [1 ]
Stoyanov, Danail [1 ]
机构
[1] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
COMPUTER-AIDED DIAGNOSIS; GASTROINTESTINAL ENDOSCOPY; RECOGNITION; COLONOSCOPY; SEGMENTATION; CLASSIFICATION; LESIONS; RECONSTRUCTION; VALIDATION; ROBOTICS;
D O I
10.1038/s41575-022-00701-y
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Modern endoscopy relies on digital technology, from high-resolution imaging sensors and displays to electronics connecting configurable illumination and actuation systems for robotic articulation. In addition to enabling more effective diagnostic and therapeutic interventions, the digitization of the procedural toolset enables video data capture of the internal human anatomy at unprecedented levels. Interventional video data encapsulate functional and structural information about a patient's anatomy as well as events, activity and action logs about the surgical process. This detailed but difficult-to-interpret record from endoscopic procedures can be linked to preoperative and postoperative records or patient imaging information. Rapid advances in artificial intelligence, especially in supervised deep learning, can utilize data from endoscopic procedures to develop systems for assisting procedures leading to computer-assisted interventions that can enable better navigation during procedures, automation of image interpretation and robotically assisted tool manipulation. In this Perspective, we summarize state-of-the-art artificial intelligence for computer-assisted interventions in gastroenterology and surgery. Advances in artificial intelligence (AI) are changing endoscopy and gastrointestinal surgery, including computer-assisted detection and diagnosis, computer-aided navigation, robot-assisted intervention and automated reporting. This Perspective introduces the role of AI in computer-assisted interventions in gastroenterology with insights on regulatory aspects and the challenges ahead.
引用
收藏
页码:171 / 182
页数:12
相关论文
共 164 条
[1]   Performance of artificial intelligence for detection of subtle and advanced colorectal neoplasia [J].
Ahmad, Omer F. ;
Puyal, Juana Gonzalez-Bueno ;
Brandao, Patrick ;
Kader, Rawen ;
Abbasi, Faisal ;
Hussein, Mohamed ;
Haidry, Rehan J. ;
Toth, Daniel ;
Mountney, Peter ;
Seward, Ed ;
Vega, Roser ;
Stoyanov, Danail ;
Lovat, Laurence B. .
DIGESTIVE ENDOSCOPY, 2022, 34 (04) :862-869
[2]   Barriers and pitfalls for artificial intelligence in gastroenterology: Ethical and regulatory issues [J].
Ahmad, Omer F. ;
Stoyanov, Danail ;
Lovat, Laurence B. .
TECHNIQUES AND INNOVATIONS IN GASTROINTESTINAL ENDOSCOPY, 2020, 22 (02) :80-84
[3]  
Ahmad OF, 2019, LANCET GASTROENTEROL, V4, P71, DOI 10.1016/S2468-1253(18)30282-6
[4]   A Dataset and Benchmarks for Segmentation and Recognition of Gestures in Robotic Surgery [J].
Ahmidi, Narges ;
Tao, Lingling ;
Sefati, Shahin ;
Gao, Yixin ;
Lea, Colin ;
Haro, Benjamin Bejar ;
Zappella, Luca ;
Khudanpur, Sanjeev ;
Vidal, Rene ;
Hager, Gregory D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (09) :2025-2041
[5]   Regulatory-approved deep learning/machine learning-based medical devices in Japan as of 2020: A review [J].
Aisu, Nao ;
Miyake, Masahiro ;
Takeshita, Kohei ;
Akiyama, Masato ;
Kawasaki, Ryo ;
Kashiwagi, Kenji ;
Sakamoto, Taiji ;
Oshika, Tetsuro ;
Tsujikawa, Akitaka .
PLOS DIGITAL HEALTH, 2022, 1 (01)
[6]   3-D Pose Estimation of Articulated Instruments in Robotic Minimally Invasive Surgery [J].
Allan, M. ;
Ourselin, S. ;
Hawkes, D. J. ;
Kelly, J. D. ;
Stoyanov, D. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (05) :1204-1213
[7]  
[Anonymous], 2020, ADV TECHNOLOGIES IND
[8]   Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study [J].
Areia, Miguel ;
Mori, Yuichi ;
Correale, Loredana ;
Repici, Alessandro ;
Bretthauer, Michael ;
Sharma, Prateek ;
Taveira, Filipe ;
Spadaccini, Marco ;
Antonelli, Giulio ;
Ebigbo, Alanna ;
Kudo, Shin-Ei ;
Arribas, Julia ;
Barua, Ishita ;
Kaminski, Michal F. ;
Messmann, Helmut ;
Rex, Douglas K. ;
Dinis-Ribeiro, Mario ;
Hassan, Cesare .
LANCET DIGITAL HEALTH, 2022, 4 (06) :E436-E444
[9]   Autonomy in Surgical Robotics [J].
Attanasio, Aleks ;
Scaglioni, Bruno ;
De Momi, Elena ;
Fiorini, Paolo ;
Valdastri, Pietro .
ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 4, 2021, 2021, 4 :651-679
[10]   Autonomous Tissue Retraction in Robotic Assisted Minimally Invasive Surgery - A Feasibility Study [J].
Attanasio, Aleks ;
Scaglioni, Bruno ;
Leonetti, Matteo ;
Frangi, Alejandro F. ;
Cross, William ;
Biyani, Chandra Shekhar ;
Valdastri, Pietro .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) :6528-6535